18 resultados para Washington (State). Legislature
Resumo:
Aboveground biomass predictive equations were developed for a highly productive 47-year-old mixed Douglas-fir and western hemlock stand in southwest Washington State to characterize the preharvest stand attributes for the Fall River Long-Term Site Productivity Study. The equations were developed using detailed biomass data taken from 31 Douglas-fir and 11 western hemlock trees within the original stand. The stand had an average of 615 live trees per hectare, with an average dbh of 35.6 cm (39.1 cm for Douglas-fir and 33.3 cm for western hemlock) and an average total tree height of 31.6 m (32.8 m for Douglas-fir and 30.2 m for western hemlock). Equations developed were of the form In Y = b(1) + b(2) In dbh, where Y = biomass in kg, dbh = diameter in cm at 1.3 m height, b(1) = intercept, and b(2) = slope of equation. Each tree part was estimated separately and also combined into total aboveground biomass. The total aboveground biomass estimation equations were In Y = -0.9950 + 2.0765 In dbh for Douglas-fir, and In Y = -1.6612 + 2.2321 In dbh for western hemlock. The estimate of the aboveground live-free biomass was of 395 Mg ha(-1) (235 Mg ha(-1) for Douglas-fir and 160 Mg ha(-1) for western hemlock), with 9.5, 29.3, 12.9, 308, and 32.7 Mg ha(-1) in the foliage, live branches, dead branches, stem wood, and stem hark, respectively. When compared with biomass estimates from six other studies, ranging in age from 22 to 110 years and from 96.3 to 636 Mg ha(-1), the biomass of the Fall River site was relatively high for its age, indicating very high productivity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents a multi-agent system for real-time operation of simulated microgrid using the Smart-Grid Test Bed at Washington State University. The multi-agent system (MAS) was developed in JADE (Java Agent DEvelopment Framework) which is a Foundation for Intelligent Physical Agents (FIPA) compliant open source multi-agent platform. The proposed operational strategy is mainly focused on using an appropriate energy management and control strategies to improve the operation of an islanded microgrid, formed by photovoltaic (PV) solar energy, batteries and resistive and rotating machines loads. The focus is on resource management and to avoid impact on loads from abrupt variations or interruption that changes the operating conditions. The management and control of the PV system is performed in JADE, while the microgrid model is simulated in RSCAD/RTDS (Real-Time Digital Simulator). Finally, the outcome of simulation studies demonstrated the feasibility of the proposed multi-agent approach for real-time operation of a microgrid.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion. Including the configurational dependence will challenge the transition state theory of protein folding. The classical transition state theory will have to be modified to be consistent. The more detailed folding mechanistic studies involving phi value analysis based on the classical transition state theory also will have to be modified quantitatively.
Resumo:
We report here the utilization of atomid layer deposition to passivate surface map states in mosoporous TiO2 nanoparticles for solid state dye sensitized solar cells based on 9,9'-spirobifluorene (spiro-OMeTAD). By depositing ZrO2 films with angstrom-level precision, coating the mesoporous TiO2 produces over a two-fold enhancement in short-circuit current density, as compared to a control device. Impedance spectroscopy measurements provide evidence that the ZrO2 coating reduces recombination lossed at the TiO2/spiro-OMeTAD interface and passivates localized surface states. Low-frequency negative capacitances, frequently observed in nanocomposite solar cells, have been associated with the surface-state mediated charge transfer from TiO2 to the spiro-OMeTAD.
Resumo:
[1] Surface-based measurements of atmospheric formic acid (HCOOH), acetic acid (CH3COOH), sulfur dioxide (SO2), hydrogen chloride (HCl), and nitric acid (HNO3) were made in central São Paulo State, Brazil, between April 1999 and March 2000. Mean concentrations were 9.0 ppb (HCOOH), 1.3 ppb (CH3COOH), 4.9 ppb (SO2), 0.3 ppb (HCl), and 0.5 ppb (HNO3). Concentrations in sugar cane burning plumes were 1160-4230 ppb (HCOOH), 360-1750 ppb (CH3COOH), 10-630 ppb (SO2), 4-210 ppb (HCl), and 14-90 ppb (HNO3). Higher ambient concentrations of SO2, HCl and HNO3 were measured during the burning season (May-November). Concentrations of SO2 and HCl increased during the evening, and of HCOOH and CH3COOH were lowest in the morning, with peak levels in the afternoon. Ratios obtained between different species showed either nighttime maxima (SO2/HCOOH, SO2/CH3COOH, SO2/HNO3, CH3COOH/HNO3, SO2/HCl and HCOOH/HNO3), daytime maxima (HCOOH/HCl, CH3COOH/HCl and HNO3/HCl), or no clear trends (HCOOH/CH3COOH). Correlation analysis showed that SO2 and HCl were primary emissions from biomass burning and road transport; HCOOH, HNO3 and CH3COOH were products of photochemistry; HCOOH and CH3COOH were emitted directly during combustion as well as from biogenic sources. Biomass burning affected atmospheric acidity on a regional scale, while vehicular emissions had greater impact in urban and adjacent areas. Atmospheric ammonia levels were insufficient to neutralize atmospheric acidity, which was mainly removed by deposition to the surface.
Resumo:
C-13 exchange solid-state NMR methods were used to study two families of siloxane/poly-(ethylene glycol) hybrid materials: Types I and II, where the polymer chains interact with the inorganic phase through physical (hydrogen bonds or van der Waals forces) or chemical (covalent bonds) interactions, respectively. These methods were employed to analyze the effects of the interactions between the organic and inorganic phases on the polymer dynamics in the milliseconds to seconds time scale, which occurs at temperatures below the motional narrowing of the NMR line width and around the polymer glass transition. Motional heterogeneities associated with these interactions and evidence of both small and large amplitude motions were directly observed for both types of hybrids. The results revealed that the hindrance to the slow molecular motions of the polymer chains due to the siloxane structures depends on the chain length and the nature of the interaction between the organic and inorganic phases.
Resumo:
The effect of addition of different amounts of acetylacetone (acacH) on the species formed at room temperature and after thermohydrolysis at 70 degreesC for 30 and 120 min of ethanolic SnCl4.5H(2)O solutions is followed by EXAFS spectroscopy at the Sn K-edge. We show that thermohydrolyzed solutions are a mixture of SnO2 nanoparticles and soluble tin polynuclear species. The complexation of the tin molecular precursors by acetylacetonate ligands is evidenced by H-1, C-13, and Sn-119 NMR spectroscopy and EXAFS for a acacH/Sn ratio higher than 2. Single crystals are isolated from solution and the structure, determined by X-ray diffraction, is built up from monomeric Cl-3(H2O)Sn(acac)-H2O units bridged together by hydrogen bonding. The acacH/Sn ratio in solution controls the polycondensation of the hydrolyzed species but not the crystallite size of the SnO2 nanoparticles (similar to2 nm). Because of the major presence of chelated tin mono- and dimeric complexes in solution for acacH/Sn > 2, the condensation is almost inhibited, meanwhile the decrease of amount of chelated complexes for the acacH/Sn < 2 gives rise to an increase of the number of nanoparticles.
Resumo:
The sols produced by admixture of ZrOCl2 acidified solutions to hot H2SO4 aqueous solutions were studied to clarify the effects of Cl- and SO42- ions on the kinetic stability of nanoparticles and to obtain some new evidence concerning the mechanism of a thermoreversible sol-gel transition observed in this system. The study of suspensions prepared with different molar ratios R-S = [Zr]/[SO42-] and R-Cl = [Zr]/[Cl-] revealed domains of composition of formation of thermoreversible gels, thermostable sols, and powder precipitation. The effects of R-S and R-Cl on the structural features of nanoparticles and on the particle solution interface were systematically analyzed for samples of thermoreversible and thermostable sol domains. Small-angle X-ray scattering measurements revealed the presence of small fractal aggregates in all samples of thermoreversible domains, while compact packing aggregates of primary particles are present in the thermostable sol. Extended X-ray absorption fine structure and elemental chemical analysis revealed that irrespective of the nominal value of R-S and R-Cl all studied samples of the thermoreversible domain are constituted by a well-defined compound possessing an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded on the surface by complexing sulfate ligands. zeta potentials of powders extracted by freeze-drying from the thermoreversible gel revealed a point of surface charge inversion attributed to the specific adsorption of SO42- ion. Thermoreversible gel formation is rationalized by considering the effect of the specific adsorption on the electrical double-layer repulsion together with the temperature dependency of the physical chemical properties of ions in solution.