239 resultados para Trypanosoma brucei
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Studies of telomere structure and maintenance in trypanosomatids have provided insights into the evolutionary origin and conservation of some telomeric components shared by trypanosomes and vertebrates. For example, trypanosomatid telomeres are maintained by telomerase and consist of the canonical TTAGGG repeats, which in Trypanosoma brucei can form telomeric loops (t-loops). However, the telomeric chromatin of trypanosomatids is composed of organ ism-specific proteins and other proteins that share little sequence similarity with their vertebrate counterparts. Because telomere maintenance mechanisms are essential for genome stability, we propose that the particular features shown by the trypanosome telomeric chromatin hold the key for the design of antiparasitic drugs.
Resumo:
Parasite virulence genes are usually associated with telomeres. The clustering of the telomeres, together with their particular spatial distribution in the nucleus of human parasites such as Plasmodium falciparum and Trypanosoma brucei, has been suggested to play a role in facilitating ectopic recombination and in the emergence of new antigenic variants. Leishmania parasites, as well as other trypanosomes, have unusual gene expression characteristics, such as polycistronic and constitutive transcription of protein-coding genes. Leishmania subtelomeric regions are even more unique because unlike these regions in other trypanosomes they are devoid of virulence genes. Given these peculiarities of Leishmania, we sought to investigate how telomeres are organized in the nucleus of Leishmania major parasites at both the human and insect stages of their life cycle. We developed a new automated and precise method for identifying telomere position in the three-dimensional space of the nucleus, and we found that the telomeres are organized in clusters present in similar numbers in both the human and insect stages. While the number of clusters remained the same, their distribution differed between the two stages. The telomeric clusters were found more concentrated near the center of the nucleus in the human stage than in the insect stage suggesting reorganization during the parasite's differentiation process between the two hosts. These data provide the first 3D analysis of Leishmania telomere organization. The possible biological implications of these findings are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Pós-graduação em Biotecnologia - IQ