59 resultados para Temporal variability
Resumo:
A quantificação do impacto das práticas de preparo sobre as perdas de carbono do solo é dependente da habilidade de se descrever a variabilidade temporal da emissão de CO2 do solo após preparo. Tem sido sugerido que as grandes quantidades de CO2 emitido após o preparo do solo podem servir como um indicador das modificações nos estoques de carbono do solo em longo termo. Neste trabalho é apresentado um modelo de duas partes baseado na temperatura e na umidade do solo e que inclui um termo exponencial decrescente do tempo que é eficiente no ajuste das emissões intermediárias após preparo: arado de disco seguido de uma passagem com a grade niveladora (convencional) e escarificador de arrasto seguido da passagem com rolo destorroador (reduzido). As emissões após o preparo do solo são descritas utilizando-se estimativa não linear com um coeficiente de determinação (R²) tão alto quanto 0.98 após preparo reduzido. Os resultados indicam que nas previsões da emissão de CO2 após o preparo do solo é importante considerar um termo exponencial decrescente no tempo após preparo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Few studies have examined the effects of temperature on spatial and temporal trends in soil CO2-C emissions in Antarctica. In this work, we present in situ measurements of CO2-C emissions and assess their relation with soil temperature, using dynamic chambers. We found an exponential relation between CO2 emissions and soil temperature, with the value of Q10 being close to 2.1. Mean emission rates were as low as 0.026 and 0.072 g of CO2-C m-2 h-1 for bare soil and soil covered with moss, respectively, and as high as 0.162 g of CO2-C m-2 h-1 for soil covered with grass, Deschampsia antarctica Desv. (Poaceae). A spatial variability analysis conducted using a 60-point grid, for an area with mosses (Sannionia uncianata) and D. antarctica, yielded a spherical semivariogram model for CO2-C emissions with a range of 1 m. The results suggest that soil temperature is a controlling factor on temporal variations in soil CO2-C emissions, although spatial variations appear to be more strongly related to the distribution of vegetation types. © 2010 Elsevier B.V. and NIPR.
Resumo:
In addition to feeding on carrion tissues and fluids, social wasps can also prey on immature and adult carrion flies, thereby reducing their populations and retarding the decomposition process of carcasses. In this study, we report on the occurrence and behavior of social wasps attracted to vertebrate carrion. The collections were made monthly from September 2006 to October 2007 in three environments (rural, urban, and forest) in six municipalities of southeast Brazil, using baited bottle traps. We collected Agelaia pallipes (Olivier, 1791) (n = 143), Agelaia vicina (Saussure, 1854) (n = 106), Agelaia multipicta (Haliday, 1836) (n = 18), and Polybia paulista Ihering, 1896 (n = 3). The wasps were observed feeding directly on the baits and preying on adult insects collected in the traps. Bait and habitat associations, temporal variability of social wasps, and possible forensic implications of their actions are discussed. © 2011 Entomological Society of America.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Soil CO2 emission (FCO2) is governed by the inherent properties of the soil, such as bulk density (BD). Mapping of FCO2 allows the evaluation and identification of areas with different accumulation potential of carbon. However, FCO2 mapping over larger areas is not feasible due to the period required for evaluation. This study aimed to assess the quality of FCO2 spatial estimates using values of BD as secondary information. FCO2 and BD were evaluated on a regular sampling grid of 60 m × 60 m comprising 141 points, which was established on a sugarcane area. Four scenarios were defined according to the proportion of the number of sampling points of FCO2 to those of BD. For these scenarios, 67 (F67), 87 (F87), 107 (F107) and 127 (F127) FCO2 sampling points were used in addition to 127 BD sampling points used as supplementary information. The use of additional information from the BD provided an increase in the accuracy of the estimates only in the F107, F67 and F87 scenarios, respectively. The F87 scenario, with the approximate ratio between the FCO2 and BD of 1.00:1.50, presented the best relative improvement in the quality of estimates, thereby indicating that the BD should be sampled at a density 1.5 time greater than that applied for the FCO2. This procedure avoided problems related to the high temporal variability associated with FCO2, which enabled the mapping of this variable to be elaborated in large areas.
Resumo:
Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dC(sail)(t)/dt = -kC(soil)(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where C-soil(t) is the available labile soil C (g m(-2)) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (F-NT) and tilled (F-Gamma) fluxes, which is: F-T = a1F(NT)e(-a2t), where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R-2), index of agreement and model efficiency, with R-2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a(2)) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a,). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a(1)) and - 1.52 x 10(-2) and 2.2 x 10(-2) day(-1) (a(2)). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A data set on Diatraea saccharalis and its parasitoids, Cotesia flavipes and tachinid flies, was analysed at five spatial scales-sugarcane mill, region, intermediary, farm and zone-to determine the role of spatial scale in synchrony patterns, and on temporal population variability. To analyse synchrony patterns, only the three highest spatial scales were considered, but for temporal population variability, all spatial scales were adopted. The synchrony-distance relationship revealed complex spatial structures depending on both species and spatial scale. Temporal population variability [SD log(x+1)] levels were highest at the smallest spatial scales although, in the majority of the cases, temporal variability was inversely dependent on sample size. All the species studied, with a few exceptions, presented spatial synchrony independent of spatial scale. The tachinid flies exhibited stronger synchrony dynamics than D. saccharalis and C. flavipes in all spatial scales with the latter displaying the weakest synchrony levels, except when mill spatial scales were compared. In some cases spatial synchrony may at first decay and then increase with distance, but the presence of such patterns can change depending on the spatial scale adopted.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Determining the variability of carbon dioxide emission from soils is an important task as soils are among the largest sources of carbon in biosphere. In this work the temporal variability of bare soil CO2 emissions was measured over a 3-week period. Temporal changes in soil CO2 emission were modelled in terms of the changes that occurred in solar radiation (SR), air temperature (T-air), air humidity (AR), evaporation (EVAP) and atmospheric pressure (ATM) registered during the time period that the experiment was conducted. The multiple regression analysis (backward elimination procedure) includes almost all the meteorological variables and their interactions into the final model (R-2 = 0.98), but solar radiation showed to be the one of the most relevant variables. The present study indicates that meteorological data could be taken into account as the main forces driving the temporal variability of carbon dioxide emission from bare soils, where microbial activity is the sole source of carbon dioxide emitted. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O trabalho teve objetivo estudar a variabilidade temporal da temperatura do ar, precipitação pluviométrica e umidade relativa do ar na cidade de Botucatu-SP, Brasil, utilizando técnicas geoestatísticas. Os dados de precipitação pluviométrica, temperatura do ar e umidade relativa do ar utilizados no presente estudo são provenientes da Estação Meteorológica da Fazenda Lageado, da Faculdade de Ciências Agronômicas-UNESP. As observações foram realizadas no período de 1988 a 2007, referem-se ao total mensal de precipitação pluvial expressa em altura de lâmina d'água (mm), médias mensais de temperatura em ºC e umidade relativa em %. Os dados foram avaliados por meio da estatística clássica e geoestatística. As variáveis climáticas tiveram sua dependência verificada por variogramas, apresentando dependência temporal maior que 76%. A série temporal de umidade relativa do ar foi a que apresentou maior alcance (8,67 meses) e, conseqüentemente, maior estabilidade climática. O conhecimento da distribuição temporal das variáveis climáticas é importante para o estudo e realização do zoneamento agroclimático, bem como para o dimensionamento do sistema de irrigação das culturas.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV