37 resultados para TM3
Resumo:
Multicolor and white light emissions have been achieved in Yb3+, Tm3+ and Ho3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO2-GeO2-Bi2O3-K2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb2O3, 0.6 wt% Tm2O3 and 0.1 wt% Ho2O3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm3+ ions and a two-photon green and red up conversions of Ho3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work we have studied pure and thulium- and chromium-doped ZBLAN glasses irradiated by ultra-short laser pulses. A Ti:sapphire CPA system was used, producing a 500 Hz train of pulses, centered at 830 nm, with 375 mu J of energy and 50 fs of duration (FWHM). The beam was focused by a 20 Him lens, producing a converging beam with a waist of 12 pin. The absorption spectra before and after laser irradiation were obtained showing production of color centers in pure, thulium-doped and chromium-doped ZBLAN glasses. A damage threshold of 9.56 TW/cm(2) was determined for ZBLAN. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Glass samples with the composition (mol%) 80TeO(2)-10Nb(2)O(5)-5K(2)O-5Li(2)O, stable against crystallization, were prepared containing Yb3+, Tm3+ and Ho3+. The energy transfer and energy back transfer mechanisms in samples containing 5% Yb3+-5% Tm3+ and 5% Yb3+-5% Tm3+-0.5% Ho3+ were estimated by measuring the absorption and fluorescence spectra together with the time dependence of the Yb3+ F-2(5/2) excited state. A good fit for the luminescence time evolution was obtained with the Yokota-Tanimoto's diffusion-limited model. The up-conversion fluorescence was also studied in 5% Yb-5% Tm. 5% Yb-0.5% Ho and 5% Yb-5% Tm-0.5% Ho tellurite glasses under laser excitation at 975 nm. Strong emission was observed from (1)G(4) and F-3(2) Tm3+ energy levels in all samples. The S-5(2) Ho3+ emission was observed only in Yb3+Ho3+ samples being completely quenched in Yb3+/Tm3+/Tm3+ samples. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Tungstate fluorophosphate glasses of good optical quality were synthesized by fusion of the components and casting under air atmosphere. The absorption spectra from near-infrared to visible were obtained and the Judd-Ofelt parameters determined from the absorption bands. Transition probabilities, excited state lifetimes and transition branching ratios, were, determined from the measurements. Pumping with a 354.7 nm beam from a pulsed laser. resulted in emission at 450 nm. due to transition D-1(2)-->F-3(4) in Tm3+ ions and a broadband emission centered at approximate to 550 nm attributed to the glass matrix. When pumping at 650 nm, two emission bands at 450 nm (D-1(2)-->F-3(4)) and at 790 nm (H-3(4)-->H-3(6)) were observed. Excitation spectra were also obtained in order to understand the origin of both emissions. Theoretical and experimental lifetimes were determined and,the results were explained in terms of multiphonon relaxation. (C) 2003 American Institute of Physics.
Resumo:
Bright blue upconversion emission by thulium ions in PbGeO3-PbF2-CdF2 glass triply doped with Nd3+-Tm3+-Yb3+ under diode laser excitation around 800 nm is reported. The results revealed that the Nd3+/Tm3+/Yb3+-codoped sample generated ten times more 475 nm blue upconversion fluorescence than the Yb3+-sensitized Tm3+-doped one, under the same excitation power. The upconversion process also showed a strong dependence upon the Yb3+ concentration. The results also indicated that the neodymium ions played a major role in the upconversion process by transfering the 800 nm excitation to thulium ions. The population of the Tm3+ ions (1)G(4) emitting level was accomplished through a multiion interaction involving ground-state absorption of pump photons around 800 nm by the Nd3+(I-4(9/2)-->H-2(9/2), F-4(5/2)) and Tm3+(H-3(6)-->F-3(4)) ions followed by energy-transfer processes involving the Nd3+-Yb3+(F-4(3/2), F-2(7/2)-->I-4(11/2), F-2(5/2)) and Yb3+-Tm3+(F-2(5/2), F-3(4)-->F-2(7/2), (1)G(4)) pairs. (C) 2003 American Institute of Physics.
Resumo:
Red, green, and blue emission through frequency upconversion and energy-transfer processes in tellurite glasses doped with Tm3+ and Er3+ excited at 1.064 mum is investigated. The Tm3+/Er3+-codoped samples produced intense upconversion emission signals at around 480, 530, 550 and 660 nm. The 480 nm blue emission was originated from the (1)G(4)-->H-3(6) transition of the Tm3+ ions excited by a multiphoton stepwise phonon-assisted excited-state absorption process. The 5 30, 5 50 nm green and 660 mn red upconversion luminescences were identified as originating from the H-2(11/2), S-4(3/2) --> I-4(15/2) and F-4(9/2) --> I-4(15/2) transitions of the Er3+ ions, respectively, populated via efficient cross-relaxation processes and excited-state absorption. White light generation employing a single infrared excitation source is also examined. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Optical spectroscopic properties of Tm3+-doped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glass are reported. The absorption spectra were obtained and radiative parameters were determined using the Judd-Ofelt theory. Characteristics of excited states were studied in two sets of experiments. Excitation at 360 nm originates a relatively narrow band emission at 450 nm attributed to transition D-1(2)-->F-3(4) of the Tm3+ ion with photon energy larger than the band-gap energy of the glass matrix. Excitation at 655 nm originates a frequency upconverted emission at 450 nm (D-1(2)-->F-3(4)) and emission at 790 nm (H-3(4)-->H-3(6)). The radiative lifetimes of levels D-1(2) and H-3(4) were measured and the differences between their experimental values and the theoretical predictions are understood as due to the contribution of energy transfer among Tm3+ ions. (C) 2003 American Institute of Physics.
Resumo:
We investigate the linear optical properties and energy transfer processes in tungstate fluorophosphate glass doped with thulium (Tm3+) and neodymium (Nd3+) ions. The linear absorption spectra from 370 to 3000 nm were obtained. Transitions probabilities, radiative lifetimes, and transition branching ratios were determined using the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] theory. Frequency up-conversion to the blue region and fluorescence in the infrared were observed upon pulsed excitation in the range of 630-700 nm. The excitation spectra of the luminescence were obtained to understand the origin of the signals. The temporal decay of the fluorescence was measured for different concentrations of the doping ions. Energy transfer rates among the Tm3+ and Nd3+ ions were also determined.
Resumo:
In this paper we investigate the energy transfer processes in TM3+/Er3+ doped telluride glass pumped at the commercial diode laser pump wavelength similar to 800 nm. Tailoring the rare-earths content in the glass matrix, seven main energy transfer channels within the doping range considered were identified, A 6-fold enhancement of the Er3+ visible frequency upconversion fluorescence at similar to 660 nm is observed due to the inclusion of Tm3+ ions. This is evidence of the relevant contribution of the route Er-1(I-4(11/2)) + Er-2(I-4(13/2)) -> Er-1(I-4(15/2)) + Er-2(F-4(9/2)) to the process. Energy migration among pumped I-4(9/2) level reducing the efficiency of the upconversion emission rate (H-3(11/2), S-4(3/2), and F-4(9/2)) is observed for Er3+ above 1.5 wt%. The rate equations regarding the observed energy transfer routes are determined and a qualitative analysis of the observed processes is reported. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Efficient energy upconversion of cw radiation at 1.064 mum into blue, red, and near infrared emission in Tm3+-doped Yb3+-sensitized 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glasses is reported. Intense blue upconversion luminescence at 485 nm corresponding to the Tm3+ (1)G(4)--> H-3(6) transition with a measured absolute power of 0.1 muW for 800 mW excitation power at room temperature is observed. The experimental results also revealed a sevenfold enhancement in the upconversion efficiency when the sample was heated from room temperature to 235 degreesC yielding 0.7 muW of blue absolute fluorescence power for 800 mW pump power. High brightness emission around 800 nm (F-3(4)--> H-3(6)) in addition to a less intense 655 nm ((1)G(4)--> H-3(4) and F-3(2,3)--> H-3(6)) fluorescence is also recorded. The energy upconversion excitation mechanism for thulium emitting levels is assigned to multiphonon-assisted anti-Stokes excitation of the ytterbium-sensitizer followed by multiphonon-assisted sequential energy-transfer processes. (C) 2001 American Institute of Physics.
Resumo:
In this work an analysis of the phenomenological Omega(lambda) intensity parameters for the Tm3+ ion in fluoroindate glass is made using the standard Judd-Ofelt theory, and a modified oscillator strength taking into account odd-order contributions is utilized. Different sets of phenomenological intensity parameters Omega(lambda) (lambda=1,2,3,4,5,6) are discussed. The set of better quality is used to analyze the influence of third-order effects through odd intensity parameters in the new approximation. Fluoroindate glasses of compositions (40-x)InF3-20ZnF(2)-20SrF(2)-16BaF(2)-2GdF(3)-2NaF-xTmF(3) with x=1, 2 and 3 mol% were prepared, and the absorption spectra at room temperature in the spectral range from 300 to 2500 nm were obtained. The experimental oscillator strengths determined from the area under the absorption band are compared to the calculated ones. (C) 1998 Elsevier B.V. S.A.
Resumo:
Eu3+ and Tm3+ doped lanthanum fluoride and lanthanum oxyfluoride are obtained from Eu3+, Tm3+ containing lanthanum fluoracetate solutions. The nature of the crystal phase obtained could be controlled by the temperature of heat treatment. Spectral characteristics of Eu3+ doped crystal phases were sufficiently different to allow utilization of Eu3+ as structural probes. Tm3+ emission at the technologically important spectral region of 1450nm could be observed for the fluoride and oxyfluoride crystal phases. The large bandwidth obtained (around 120nm) suggests potential applications in optical amplification. SiO2-LaF3-LaOF composite materials were also prepared. It is observed that for heat treatments above 800degreesC, fluorine loss, probably in the form of SiF4 hinder the observation of Tm3+ emission. Eu3+ spectroscopic characteristics clearly show the evolution of a fluoride like environment to an amorphous oxide one as the temperature of heat treatment increased. Thin films obtained by dip-coating on V-SiO2 substrates and treated at 300degreesC, 500degreesC and 800degreesC display guided modes in the visible and infrared regions. Optical characteristics (refractive index and films thickness) were obtained at 543.5, 632.8 and 1550nm. Attenuation as low as 1.8dB/cm was measured at 632.8nm. (C) 2004 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
The influence of the temperature on the nucleation of silver nanoparticles (NPs) in Tm3+/Yb3+ codoped PbO-GeO2 glasses was studied in this work. The infrared-to-visible frequency upconversion (UC) luminescence of Tm3+ ions was used to probe the NPs nucleation and the results were correlated with the increase of the heat-treatment temperature. Emission spectra in the blue-red region were measured by exciting the samples with a cw 980 nm diode laser in resonance with the Yb3+ transition (F-2(7/2) -> F-2(5/2)). The results were correlated with transmission electron microscopy measurements and revealed the different behavior of the nucleation process as a function of temperature.The enhanced UC emission in the visible region is attributed to the increased local field in the proximity of the silver NPs combined with the Yb3+ -> Tm3+ energy transfer. (C) 2010 Elsevier B.V. All rights reserved.