83 resultados para T S fuzzy system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the design of a fuzzy controller with simplified architecture that use an artificial neural network working as the aggregation operator for several active fuzzy rules. The simplified architecture of the fuzzy controller is used to minimize the time processing used in the closed loop system operation, the basic procedures of fuzzification are simplified to maximum while all the inference procedures are computed in a private way. As consequence, this simplified architecture allows a fast and easy configuration of the simplified fuzzy controller. The structuring of the fuzzy rules that define the control actions is previously computed using an artificial neural network based on CMAC Cerebellar Model Articulation Controller. The operational limits are standardized and all the control actions are previously calculated and stored in memory. For applications, results and conclusions several configurations of this fuzzy controller are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology for pipeline leakage detection using a combination of clustering and classification tools for fault detection is presented here. A fuzzy system is used to classify the running mode and identify the operational and process transients. The relationship between these transients and the mass balance deviation are discussed. This strategy allows for better identification of the leakage because the thresholds are adjusted by the fuzzy system as a function of the running mode and the classified transient level. The fuzzy system is initially off-line trained with a modified data set including simulated leakages. The methodology is applied to a small-scale LPG pipeline monitoring case where portability, robustness and reliability are amongst the most important criteria for the detection system. The results are very encouraging with relatively low levels of false alarms, obtaining increased leakage detection with low computational costs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a novel approach for mapping lightning processes using fuzzy logic. The estimation process is carried out using a fuzzy system based on Sugeno's architecture. Simulation results confirm that proposed approach can be efficiently used in these types of problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a novel approach for mapping lightning processes using fuzzy logic. The core regarding lightning process is to identify and to model those uncertain information on mathematical principles. In fact, the lightning process involves several nonlinear features that our current mathematical tools would not be able to model. The estimation process has been carried out using a fuzzy system based on Sugeno's architecture. Simulation results confirm that proposed approach can be efficiently used in these types of problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fuzzy ruled-based system was developed in this study and resulted in an index indicating the level of uncertainty related to commercial transactions between cassava growers and their dealers. The fuzzy system was developed based on Transaction Cost Economics approach. The fuzzy system was developed from input variables regarding information sharing between grower and dealer on “Demand/purchase Forecasting”, “Production Forecasting” and “Production Innovation”. The output variable is the level of uncertainty regarding the transaction between seller and buyer agent, which may serve as a system for detecting inefficiencies. Evidences from 27 cassava growers registered in the Regional Development Offices of Tupa and Assis, São Paulo, Brazil, and 48 of their dealers supported the development of the system. The mathematical model indicated that 55% of the growers present a Very High level of uncertainty, 33% present Medium or High. The others present Low or Very Low level of uncertainty. From the model, simulations of external interferences can be implemented in order to improve the degree of uncertainty and, thus, lower transaction costs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A lógica fuzzy admite infinitos valores lógicos intermediários entre o falso e o verdadeiro. Com esse princípio, foi elaborado neste trabalho um sistema baseado em regras fuzzy, que indicam o índice de massa corporal de animais ruminantes com objetivo de obter o melhor momento para o abate. O sistema fuzzy desenvolvido teve como entradas as variáveis massa e altura, e a saída um novo índice de massa corporal, denominado Índice de Massa Corporal Fuzzy (IMC Fuzzy), que poderá servir como um sistema de detecção do momento de abate de bovinos, comparando-os entre si através das variáveis linguísticas )Muito BaixaM, ,BaixaB, ,MédiaM, ,AltaA e Muito AltaM. Para a demonstração e aplicação da utilização deste sistema fuzzy, foi feita uma análise de 147 vacas da raça Nelore, determinando os valores do IMC Fuzzy para cada animal e indicando a situação de massa corpórea de todo o rebanho. A validação realizada do sistema foi baseado em uma análise estatística, utilizando o coeficiente de correlação de Pearson 0,923, representando alta correlação positiva e indicando que o método proposto está adequado. Desta forma, o presente método possibilita a avaliação do rebanho, comparando cada animal do rebanho com seus pares do grupo, fornecendo desta forma um método quantitativo de tomada de decisão para o pecuarista. Também é possível concluir que o presente trabalho estabeleceu um método computacional baseado na lógica fuzzy capaz de imitar parte do raciocínio humano e interpretar o índice de massa corporal de qualquer tipo de espécie bovina e em qualquer região do País.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the critical problems in implementing an intelligent grinding process is the automatic detection of workpiece surface burn. This work uses fuzzy logic as a tool to classify and predict burn levels in the grinding process. Based on acoustic emission signals, cutting power, and the mean-value deviance (MVD), linguistic rules were established for the various burn situations (slight, intermediate, severe) by applying fuzzy logic using the Matlab Toolbox. Three practical fuzzy system models were developed. The first model with two inputs resulted only in a simple analysis process. The second and third models have an additional MVD statistic input, associating information and precision. These two models differ from each other in terms of the rule base developed. The three developed models presented valid responses, proving effective, accurate, reliable and easy to use for the determination of ground workpiece burn. In this analysis, fuzzy logic translates the operator's human experience associated with powerful computational methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In some practical problems, for instance, in the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Thus, a method for state-derivative feedback design applied to uncertain nonlinear systems is proposed in this work. The nonlinear systems are represented by Takagi-Sugeno fuzzy models during the modeling of the problem, allowing to use Linear Matrix Inequalities (LMIs) in the controller design. This type of modeling ease the control design, because, LMIs are easily solved using convex programming technicals. The control design aimed at system stabilisation, with or without bounds on decay rate. The efficiency of design procedure is illustrated through a numerical example.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the fuzzy Lyapunov function approach is considered for stabilizing continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing a slack LMI variable into the problem formulation. The stability results are thus used in the state feedback design which is also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilizing conditions presented. © 2011 IFAC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, the fuzzy Lyapunov function approach is considered for stabilising continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing slack LMI variables into the problem formulation. The relaxation conditions given can also be used with a class of fuzzy Lyapunov functions which also depends on the membership function first-order time-derivative. The stability results are thus extended to systems with large number of rules under membership function order relations and used to design parallel-distributed compensation (PDC) fuzzy controllers which are also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilising conditions presented. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

s-graduação em Engenharia Mecânica - FEB

Relevância:

70.00% 70.00%

Publicador:

Resumo:

s-graduação em Engenharia Elétrica - FEIS

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Currently new techniques for data processing, such as neural networks, fuzzy logic and hybrid systems are used to develop predictive models of complex systems and to estimate the desired parameters. In this article the use of an adaptive neuro fuzzy inference system was investigated to estimate the productivity of wheat, using a database of combination of the following treatments: five N doses (0, 50, 100, 150 and 200 kg ha(-1)), three sources (Entec, ammonium sulfate and urea), two application times of N (at sowing or at side-dressing) and two wheat cultivars (IAC 370 and E21), that were evaluated during two years in Selviria, Mato Grosso do Sul, Brazil. Through the input and output data, the system of adaptive neuro fuzzy inference learns, and then can estimate a new value of wheat yield with different N doses. The productivity prediciton error of wheat in function of five N doses, using a neuro fuzzy system, was smaller than that one obtained with a quadratic approximation. The results show that the neuro fuzzy system is a viable prediction model for estimating the wheat yield in function of N doses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main objective of the presented study is the development of a predictive interval type-2 fuzzy inference system in order to estimate the mortality risk for a newborn, to be used as an auxiliary tool for decision making in medical centers where there is a lack of professionals for this purpose and, afterwards, to compare its performance to a type-1 fuzzy system. The input variables were chosen due to their acquisition ‘simplicity, not involving any invasive tests, such as blood tests or other specific tests. The variables are easily obtained in the first few minutes of life: birth weight, gestational age at delivery, 5-minute Apgar score and previous report of stillbirth. Databases from the DATASUS were used to validate the model. 1351 records from the city of São José dos Campos, a mid-sized city in the São Paulo state’s countryside, were considered in this study. Finally, an analysis using the ROC curve was performed to estimate the model’s accuracy

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the application of fuzzy theory to support the decision of implementing energy efficiency program in sawmills operating in the processing of Pinustaeda and Pinuselliotii. The justification of using a system based on fuzzy theory for analysis of consumption and the specific factors involved, such is the diversity of rates / factors. With the fuzzy theory, we can build a reliable system for verifying actual energy efficiency. The indices and factors characteristic of industrial activity were measured and used as the basis for the fuzzy system. We developed a management system and technology. The system involves the management practices in energy efficiency, maintenance of plant and equipment and the presence of qualified staff. The technological system involves the power factor, load factor, the factor of demand and the specific consumption. The first response provides the possibility of increased energy efficiency and the second level of energy efficiency in the industry studied. With this tool, programs can be developed for energy conservation and energy efficiency in the industrial timber with wide application in this area that is as diverse as production processes. The same systems developed can be used in other industrial activities, provided they are used indices and characteristic features of the sectors involved.