134 resultados para Symbiotic dinoflagellate
Resumo:
The symbiotic lifestyle is widespread among porcellanid crabs, which maintain ecological and co-evolutionary associations with annelid polychaetes, poriferans, cnidarians, echinoderms, gastropod. mollusks, and other crustaceans such as shrimps and hermit crabs, among others. We investigated the ecological association between the hermit crab Dardanus insignis and the porcellanid Porcellana sayana, in southeastern Brazil. Porcellanid crabs, hermit crabs, and available shells were collected monthly from July 2001 to June 2003, with a shrimp boat equipped with two double-rig trawl nets. The majority of P. sayana specimens were collected in shells occupied by D. insignis (96.6%); a few were found in empty shells (3.4%). The catch of both symbionts and hosts increased with increasing depth, with the highest occurrence at 35 m. The F. sayana crabs of various sizes could be found solitary or forming aggregations of up to 14 individuals per host, showing no sex or size segregation. In spite of the high diversity of shell species occupied by the hermit crabs and also available in the field, only a few of them were also utilized by P. sayana. The majority (93%) of shells utilized by P. sayana also hosted other symbiont species, constituting the basis of extensive symbiotic complexes. Thus, the ecological relationship between D. insignis and P. sayana may be classified as a non-obligate and non-specific symbiosis that may also involve other facultative organisms such as sea anemones. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Atta sexdens L, ante feed on the Fungus they cultivate on cut leaves inside their nests. The fungus, Leucoagaricus gongylophorus, metabolizes plant polysaccharides, such as xylan, starch, pectin, and cellulose, mediating assimilation of these compounds lay the ants, This metabolic integration may be an important part of the ant-fungus symbiosis, and it involves primarily xylan and starch, both of which support rapid fungal growth. Cellulose seems to be less important for symbiont nutrition, since it is poorly degraded and assimilated by the fungus. Pectin is rapidly degraded but slowly assimilated by L. gongylophorus, and its degradation may occur so that the fungus can more easily access other polysaccharides in the leaves.
Resumo:
The focus of this study was the identification of compounds from plant extracts for use in crop protection. This paper reports on the toxic activity of fractions of leaf extracts of Ricinus communis L (Euphorbiaceae) and isolated active compounds in the leaf-cutting ant Atta sexdens rubropilosa Forel and its symbiotic fungus Leucoagaricus gongylophorus (Singer) Moller. The main compounds responsible for activity against the fungus and ant in leaf extracts of R communis were found to be fatty acids for the former and ricinine for the ants. (C) 2004 Society of Chemical Industry.
Resumo:
Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular alpha-amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress a-amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimutates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which Leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
1 Nine synthetic amides similar to natural N-piperidine-3-(4,5-methylenedioxyphenyl)-2-(E)-propenainide and N-pyrrolidine-3-(4,5-methylenedyoxiphenyl)2-(E)-propenamide were synthesized and identified by their spectroscopic data.2 the toxicity of these synthetic amides to the Atta sexdens rubropilosa workers and the antifungal activity against Leticoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, were determined.3 Workers ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls for N-pyrrolidine-3(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N-benzyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.4 the completely inhibition (100%) of the fungal growth was observed with N-piperldine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N,N-diethyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at concentrations of 50 and 100 mu g/mL and N-pirrolidine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.5 the possibility of controlling these insects in the future using synthetic piperamides that can simultaneously target both organisms is discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Our findings revealed two distinct patterns of substrate preparation: the pattern of leaf-cutting ants foraging on dicotyledons is marked by highly fragmented substrate resulting in a more advanced initial decomposition. The pattern of leaf-cutting ants harvesting grasses is characterized by large pieces of substrate, resulting in little initial decomposition. Ants foraging on both types of plants are apparently intermediary between the two patterns, although more similar to the patterns of those foraging on dicotyledons. Also, the behavior of scraping the substrate was described for the first time, it is very important for the removal of the epicuticular wax layer of the leaves helping the growth of the symbiotic fungus.
Resumo:
O isolamento e a manutenção de fungos basidiomicetos simbiontes de formigas da tribo Attini tem sido dificultado pela baixa velocidade de crescimento desses fungos, bem como pela presença de muitos microrganismos que vivem na superfície do material que as formigas mantêm no interior nos ninhos como substrato para o crescimento dos seus fungos simbiontes. No presente trabalho nós descrevemos um método que aumenta em mais de sete vezes a eficiência de isolamento desses fungos, quando comparada àquela obtida por procedimentos tradicionais. Ninhos subterrâneos de formigas atíneas dos gêneros Atta, Acromyrmex, Trachymyrmex e Mycetarotes foram localizados e deles foram coletadas amostras contendo fungos simbiontes e formigas, que foram transportadas para o laboratório, onde as formigas foram capazes de limpar a cultura do fungo e estimular o seu crescimento. em seguida, porções dos micélios foram assepticamente coletadas e transferidas para meio Yeast Nitrogen Base contendo glicose e cloranfenicol. Para facilitar a manutenção dos isolados em culturas de laboratório, diferentes nutrientes foram analisados para a elaboração de um meio de cultivo complexo, que possibilitou aumentar a velocidade de crescimento dos fungos e estocá-los por longos períodos. O método foi aplicado com sucesso para os fungos simbiontes de todos os gêneros de formigas estudados, gerando, assim, um procedimento extremamente útil para a formação e manutenção de uma coleção representativa de diferentes fungos simbiontes de formigas da tribo Attini.
Resumo:
Leaf-cutting ants of the genera Atta and Acromyrmex (tribe Attini) are symbiotic with basidiomycete fungi of the genus Leucoagaricus (tribe Leucocoprineae), which they cultivate on vegetable matter inside their nests. We determined the variation of the 28S, 18S, and 5.8S ribosomal DNA (rDNA) gene loci and the rapidly evolving internal transcribed spacers 1 and 2 (ITS1 and ITS2) of 15 sympatric and allopatric fungi associated with colonies of 11 species of leafcutter ants living up to 2,600 km apart in Brazil. We found that the fungal rDNA and ITS sequences from different species of ants were identical (or nearly identical) to each other, whereas 10 GenBank Leucoagaricus species showed higher ITS variation. Our findings suggest that Atta and Acromyrmex leafcutters living in geographic sites that are very distant from each other cultivate a single fungal species made up of closely related lineages of Leucoagaricus gongylophorus. We discuss the strikingly high similarity in the ITS1 and ITS2 regions of the Atta and Acromyrmex symbiotic L. gongylophorus studied by us, in contrast to the lower similarity displayed by their non-symbiotic counterparts. We suggest that the similarity of our L. gongylophorus isolates is an indication of the recent association of the fungus with these ants, and propose that both the intense lateral transmission of fungal material within leafcutter nests and the selection of more adapted fungal strains are involved in the homogenization of the symbiotic fungal stock.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Leucoagaricus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens, produces polysaccharidases that degrade leaf components by generating nutrients believed to be essential for ant nutrition. We evaluated pectinase, amylase, xylanase, and cellulase production by L. gongylophorus in laboratory cultures and found that polysaccharidases are produced during fungal growth on pectin, starch, cellulose, xylan, or glucose but not cellulase, whose production is inhibited during fungal growth on xylan. Pectin was the carbon source that best stimulated the production of enzymes, which showed that pectinase had the highest production activity of all of the carbon sources tested, indicating that the presence of pectin and the production of pectinase are key features for symbiotic nutrition on plant material. During growth on starch and cellulose, polysaccharidase production level was intermediate, although during growth on xylan and glucose, enzyme production was very low. We propose a possible profile of polysaccharide degradation inside the nest, where the fungus is cultured on the foliar substrate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The consumption of foods containing probiotic and prebiotic ingredients is growing consistently every year, and in view of the limited number of studies investigating their effect in the elderly.Objective: The objective of this study was to evaluate the effect of the consumption of a symbiotic shake containing Lactobacillus acidophilus, Bifidobacterium bifidum and fructooligosaccharides on glycemia and cholesterol levels in elderly people.Methods: A randomized, double-blind, placebo-controlled study was conducted on twenty volunteers (ten for placebo group and ten for symbiotic group), aged 50 to 60 years. The criteria for inclusion in the study were: total cholesterol > 200 mg/dL; triglycerides > 200 mg/dL and glycemia > 110 mg/dL. Over a total test period of 30 days, 10 individuals (the symbiotic group) consumed a daily dose of 200 mL of a symbiotic shake containing 10(8) UFC/mL Lactobacillus acidophilus, 10(8) UFC/mL Bifidobacterium bifidum and 2 g oligofructose, while 10 other volunteers (the placebo group) drank daily the same amount of a shake that did not contain any symbiotic bacteria. Blood samples were collected 15 days prior to the start of the experiment and at 10-day intervals after the beginning of the shake intake. The standard lipid profile (total cholesterol, triglycerides and HDL cholesterol) and glycemia, or blood sugar levels, were evaluated by an enzyme colorimetric assay.Results: The results of the symbiotic group showed a non-significant reduction (P > 0.05) in total cholesterol and triglycerides, a significant increase (P < 0.05) in HDL cholesterol and a significant reduction (P < 0.05) in fasting glycemia. No significant changes were observed in the placebo group.Conclusion: The consumption of symbiotic shake resulted in a significant increase in HDL and a significant decrease of glycemia.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)