89 resultados para Surface characteristics
Resumo:
Polypropylene (PP) samples were treated by Dielectric Barrier Discharge (DBD) in order to modify their surface characteristics. The XPS analysis reveals that the DBD treatment added oxygen atoms to the PP surface. These polar groups cause increase in the wettability as shown by water contact angle measurements. The formation of low-molecular-weight oxidized materials (LMWOMs) in the form of small nodules on the PP surface was observed by atomic force microscopy (AFM). The presence of oxygen polar groups on the PP surface was also confirmed by infrared spectroscopy (FTIR). All analysis were performed before and after rinsing the treated samples in water and showed that the LMWOM can be removed from the surface by polar solvents.
Resumo:
Aim: The first aim of the present experiment was to compare bone healing at implants installed in recipient sites prepared with conventional drills or a piezoelectric device. The second aim was to compare implant osseointegration onto surfaces with and without dendrimers coatings. Material and Methods: Six Beagles dogs were used in this study. Five implants with two different surfaces, three with a ZirTi® surface (zirconia sand blasted, acid etched), and two with a ZirTi®-modified surface with dendrimers of phosphoserine and polylysine were installed in the right side of the mandible. In the most anterior region (P2, P3), two recipient sites were prepared with drills, and one implant ZirTi® surface and one coated with dendrimers implants were installed at random. In the posterior region (P4 and M1), three recipient sites were randomly prepared: two sites with a Piezosurgery® instrument and one site with drill and two ZirTi® surface and one coated with dendrimers implants installed. Three months after the surgery, the animals were sacrificed for histological analysis. Results: No complications occurred during the healing period. Three implants were found not integrated and were excluded from analysis. However, n = 6 was obtained. The distance IS-B at the buccal aspect was 2.2 ± 0.8 and 1.8 ± 0.5 mm, while IS-C was 1.5 ± 0.9 and 1.4 ± 0.6 mm at the Piezosurgery® and drill groups, respectively. Similar values were obtained between the dendrimers-coated and ZirTi® surface implants. The BIC% values were higher at the drill (72%) compared to the Piezosurgery® (67%) sites. The BIC% were also found to be higher at the ZirTi® (74%) compared to the dendrimers-coated (65%) implants, the difference being statistically significant. Conclusion: This study has revealed that oral implants may osseointegrate equally well irrespective of whether their bed was prepared utilizing conventional drills with abundant cooling or Piezosurgery®. Moreover, the surface coating of implants with dendrimers phosphoserine and polylysine did not improve osseointegration. © 2012 John Wiley & Sons A/S.
Resumo:
This study evaluated the effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. Disc-shaped zirconia specimens (Ø: 15mm, thickness: 1.2mm) (N=32) were submitted to one of the air-particle abrasion protocols (n=8 per group): (a) 50μm Al2O3 particles, (b) 110μm Al2O3 particles coated with silica (Rocatec Plus), (c) 30μm Al2O3 particles coated with silica (CoJet Sand) for 20s at 2.8bar pressure. Control group received no air-abrasion. All specimens were initially cyclic loaded (×20,000, 50N, 1Hz) in water at 37°C and then subjected to biaxial flexural strength testing where the conditioned surface was under tension. Zirconia surfaces were characterized and roughness was measured with 3D surface profilometer. Phase transformation from tetragonal to monoclinic was determined by Raman spectroscopy. The relative amount of transformed monoclinic zirconia (FM) and transformed zone depth (TZD) were measured using XRD. The data (MPa) were analyzed using ANOVA, Tukey's tests and Weibull modulus (m) were calculated for each group (95% CI). The biaxial flexural strength (MPa) of CoJet treated group (1266.3±158A) was not significantly different than that of Rocatec Plus group (1179±216.4A,B) but was significantly higher than the other groups (Control: 942.3±74.6C; 50μm Al2O3: 915.2±185.7B,C). Weibull modulus was higher for control (m=13.79) than those of other groups (m=4.95, m=5.64, m=9.13 for group a, b and c, respectively). Surface roughness (Ra) was the highest with 50μm Al2O3 (0.261μm) than those of other groups (0.15-0.195μm). After all air-abrasion protocols, FM increased (15.02%-19.25%) compared to control group (11.12%). TZD also showed increase after air-abrasion protocols (0.83-1.07μm) compared to control group (0.59μm). Air-abrasion protocols increased the roughness and monoclinic phase but in turn abrasion with 30μm Al2O3 particles coated with silica has increased the biaxial flexural strength of the tested zirconia. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effect of carbon fiber surface characteristics on flexural properties of structural composites is studied in this work. Two types of intermediate modulus carbon fibers were used: T800HB and IM7. Results revealed that higher mechanical properties are linked with higher interfacial adhesion. Morphologies and chemical compositions of commercial carbon fibers (CF) were characterized by Fourier Transformed Infra Red (FTIR) and Scanning Electronic Microscopy (SEM). Comparing the results, the T800HB apparently has more roughness, since the IM7 seems to be recovered for a polymeric film. On other hand, the IM7 one shows higher interactivity with epoxy resin system Cycom 890 RTM. Composites produced with Resin Transfer Molding (RTM) were tested on a flexural trial. Interfacial adhesion difference was showed with SEM and Dynamic Mechanical Analyses (DMA), justifying the higher flexural behavior of composites made with IM7 fibers. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The aim of the current review was to investigate the implications of the surface and bulk properties of abutment implants and their degradation in relation to periodontal health. The success of dental implants is no longer a challenge for dentistry. The scientific literature presents several types of implants that are specific for each case. However, in cases of prosthetics components, such as abutments, further research is needed to improve the materials used to avoid bacterial adhesion and enhance contact with epithelial cells. The implanted surfaces of the abutments are composed of chemical elements that may degrade under different temperatures or be damaged by the forces applied onto them. This study showed that the resulting release of such chemical elements could cause inflammation in the periodontal tissue. At the same time, the surface characteristics can be altered, thus favoring biofilm development and further increasing the inflammation. Finally, if not treated, this inflammation can cause the loss of the implant.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O trabalho objetivou avaliar o efeito de surfatantes em soluções aquosas sobre a tensão superficial dinâmica e ângulo de contato das gotas em diferentes superfícies: artificiais (lâmina de vidro e de óxido de alumínio) e naturais (superfícies adaxiais de folhas de Euphorbia heterophylla, Ipomoea grandifolia e Brachiaria plantaginea). Seis formulações de surfatantes (Antideriva®; Uno®; Pronto 3®; Li-700®; Supersil® e Silwet L-77®), respectivamente nas doses recomendadas do produto comercial (0,050; 0,025; 0,100; 0,250; 0,100 e 0,100 % v v-1) e o dobro delas, foram avaliadas em soluções aquosas. A tensão superficial dinâmica e o ângulo de contato formado sobre as superfícies naturais foram medidos por tensiômetro. Os ângulos de contato formados pelas gotas nas superfícies artificiais foram obtidos por análise de imagens capturadas por uma câmera digital. Os surfatantes influenciam nas propriedades físico-químicas de soluções aquosas. As soluções contendo os surfatantes Silwet L-77® e Supersil®; nas doses de 0,100 e 0,200% v v-1; proporcionaram maiores reduções na tensão superficial dinâmica e menores ângulos de contato das gotas sobre as superfícies artificiais e naturais. Os surfatantes organossiliconados em solução aquosa foram mais eficientes na redução da tensão superficial e proporcionaram maior molhamento de superfícies natural e artificial. em alvos naturais, essas propriedades obtidas com organossiliconados são dependentes das características de superfície das espécies vegetais.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cellulose chemically modified with p-aminobenzoic groups, abbreviated as Cel-PAB, was used for preconcentration of copper, iron, nickel, and zinc from ethanol fuel, normally used in Brazil as engine fuel. The surface characteristics and the surface area of the cellulose were obtained before and after chemical modification using FT-IR, elemental analysis, and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques.