297 resultados para SnO2 membranes
Resumo:
Unsupported SnO2 membranes were prepared by sol-gel process and characterized by N2 adsorption-desorption isotherms and X-ray diffraction. Results show that the texture of dried samples does not change appreciably with the concentration of electrolyte. All of the pore size range used in ultrafiltration process was screened using sintering temperature between 300 and 700°C. © 1994 Kluwer Academic Publishers.
Resumo:
The colloidal route of the sol-gel process was used to prepare supported SnO2 membranes. The influence of the sol and monoelectrolyte concentrations on the formation of the gel layer by sol-casting on the top of macroporous alpha-Al2O3 support was described. The stability of the colloidal suspension as a function of the concentrations was analyzed from creep-recovery measurements. The calcined supported membranes were characterized by nitrogen adsorption-desorption isotherms and scanning electron microscopy. The set of results show that homogeneous membrane layers containing the smallest quantity of cracks are formed in a critical interval of sol (1.01 less than or equal to[SnO2]less than or equal to 1.4 M) and electrolyte (2.O less than or equal to[Cl-]less than or equal to 4.0 mM) concentrations. The samples prepared from concentrated suspensions present a lot of interconnected cracks which favors the peeling of the coated layer. The membranes have pores of average diameter of about 1 nm.
Resumo:
In this work, the effect of the substrate microstructure on the formation of SnO2 membranes and of the sintering conditions on their porosity have been analysed. Samples have been prepared by colloidal suspensions cast on alumina or kaolin substrates. Supported membranes have been characterized by Hg porosimetry, MEV, XRD and N-2 adsorption-desorption isotherms. The results show that the narrower pore size distribution of alumina substrate allowed to prepare membranes more homogeneous and free of cracks than that supported on kaolin. The crystallite and pore sizes of the membranes could be controlled by adjusting the temperature of sintering, allowing materials with adequate microstructure with application for ultrafiltration process.
Resumo:
SnO2 supported membranes, presenting 3.0 nm average pore size, have been produced by sol casting on alumina tubular substrate using aqueous colloidal suspensions prepared by sol-gel route. The selectivity and flux throughout SnO2 membrane were analyzed by permeation experiments, using a laboratory tangential filtration pilot equipped with a monotubular membrane. To evaluate the effect of the surface charge at the membrane-solution interface, aqueous salt solutions (NaCl, Na2SO4, CaCl, and CaSO4) of different ionic strength have been filtered and the results correlated with the values of zeta potential measured at several pH. The results show that the retention coefficient is dependent on the electrolyte present in aqueous solution decreasing as: (dication, monoanion) > (monocation, monoanion) approximate to (monocation, dianion) > (dication, dianion). The surface charge and the cation adsorption capacity play a determinant role in these selectivity sequences. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work the sol-gel process was used to prepare SnO2 supported membranes with an average pore size of 2.5 nm. The effects of salt concentration (NaCl or CaCl2) and of the pH of the aqueous solutions used on the flux and selectivity through the SnO2 membrane were analyzed by permeation experiments and the results interpreted taking account of the zeta potential values determined from the electrophoretic mobility of the SnO2 powder aqueous dispersion. The results show that the ion flux (Na+, Ca2+ and Cl-) throughout the membrane is determined by the electrostatic repulsion among these species and the surface charge at the tin oxide-solution interface.
Resumo:
Supported ceramic membranes have been produced by the sol-casting procedure from aqueous colloidal suspensions prepared by the sol-gel route. Coatings on a tubular alumina support have been successfully performed leading to crack free layers. Samples have been sintered at 400, 500 and 600 degreesC, and the effect of heating treatment on the nanostructure and on the ultrafiltration properties are analyzed. The characterization has been done by high resolution scanning electron microscopy, nitrogen adsorption-desorption isotherms, water permeation and cut-off determination using polyethylene glycol standard solutions. The micrographs have revealed that grains and pore size increase with the temperature, whereas their shape remains invariant. This results is in agreements with N-2 adsorption-desorption analyses, which have revealed that the mean pore size diameter increases from 4 to 10 nm as the sintering temperature increases from 400 to 600 degreesC, while the total porosity remains constant. Furthermore, the tortuosity, calculated from water permeability, is essentially invariant with the sintering temperatures. The membranes cut-off, determined with a retention rate equal to 95%, are 3500, 6500 and 9000 g . mol(-1) for 400, 500 and 600 degreesC, respectively, showing that the permeation properties of SnO2 ultrafiltration membranes can easily be controlled by sintering condition.
Resumo:
SnO2 supported membranes have been prepared by sol-casting on alumina tubular substrate, using aqueous colloidal suspensions prepared by sol-gel route. The viscoelastic behaviour during sol ageing was analyzed by dinamic rheologial measurements. The complex viscosity and the storage and loss moduli have been followed during the sol-gel transition and the results have been correlated with the linear aggregates growth and the scalar percolation models. The scanning electron microscopy has evidenced that the homogeneity and thickness of the membrane depend on the sol ageing time. Crack-free and homogeneous membranes have been obtained for coated layers of 0.5μm thickness. © 1997 Trans Tech Publications.
Resumo:
The preparation of crack-free SnO2 supported membranes requires the development of new strategies of synthesis capable to allow controlled changes of surface chemistry and to improve the processability of supported layers. In this way, the controlled modification of the SnO2 nanoparticle surface by adding capping molecules like Tiron(R) ((OH)(2)C6H2(SO3Na)(2)) during the sol-gel process was studied, aiming to obtain high performance membranes. Colloidal suspensions were prepared by hydrolyzing SnCl4.5H(2)O aqueous solution with NH4OH in presence of Tiron(R). The effect of the amount of Tiro(R) (from I to 20 wt.%) on the structural features of nanoparticles, powder redispersability and particle-solution interface properties was investigated by X-ray powder diffraction (XRPD), extended X-ray absorption fine structure (EXAFS), quasi-elastic light scattering and electrophoretic mobility measurements. XRPD and EXAFS results showed that the addition of Tiron(R) up to 20 wt.% to colloidal suspensions does not affect the crystallite size of SnO2 primary particles, determined around 2-3 nm. This value is comparable to the hydrodynamic size measured after redispersion of powder prepared with amount of Tiro(R) higher than 7.5 wt.%, indicating the absence of condensation reactions between primary particles after the initial precipitation step. As a consequence the powder with amount of Tiron(R) > 7.5 wt.%, can be fully redispersed in aqueous solution at pH greater than or equal to I I until a nanoparticle concentration of 6 vol.%. The electrophoresis measurements showed a decrease of the isoelectric point by increasing the amount of grafted Tiron(R) at the SnO2 nanoparticle surface, resulting in negatively charged particle-solution interface in all the studied pH range (2-11). These features govern the gelation process favoring the preparation of crack-free SnO2 supported membranes. The control exercised by Tiron(R) modifying agent in the aggregation process allows the fine-tuning of the porosity, from 0.124 to 0.065 cm(3) g(-1), and mean pore size, from 6.4 to 1.9 nm, as the amount of grafted molecules increases from 0 to 10 wt.%. In consequence, the membrane cut-off determined by filtration of polyethylene glycol standard solutions can be screened from 1500 to 3500 g mol(-1). (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal stability, thermal decomposition process, residual mass, temperature of glass transition (T-g) and temperature dependence of storage modulus (E'), were determined for latex membranes prepared from six clones of Hevea brasiliensis: IAC 331, IAC 332, IAC 333 and IAC 334 grown at experimental plantations of Instituto Agronomico de Campinas (IAC) in Votuporanga, São Paulo State, Brazil. Latex membranes from GT1 and RRIM 600 Asian matrix clones were used as references. The thermal behavior of latex membranes from genetically improved rubber trees was characterized using thermogravimetry/derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The thermal behavior of latex from clones studied in the present work showed similar features of the clones previously reported (IAC 40, IAC 300, IAC 301, IAC 328, IAC 329 and IAC 330), with mass loss in four consecutive steps, except IAC 333, which showed an additional mass loss step. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)