31 resultados para SEQUENCE EVOLUTION
Sequence, evolution and ligand binding properties of mammalian Duffy antigen/receptor for chemokines
Resumo:
The Duffy antigen/receptor for chemokine, DARC, acts as a widely expressed promiscuous chemokine receptor and as the erythrocyte receptor for Plasmodium vivax. To gain insight into the evolution and structure/function relations of DARC, we analyzed the binding of anti-human Fy monoclonal antibodies (mAbs) and human chemokines to red blood cells (RBCs) from 11 nonhuman primates and two nonprimate mammals, and we elucidated the structures of the DARC genes from gorilla, gibbon, baboon, marmoset, tamarin, night monkey and cattle. CXCL-8 and CCL-5 chemokine binding analysis indicated that the promiscuous binding profile characteristic of DARC is conserved across species. Among three mAbs that detected the Fy6 epitope by flow cytometric analysis of human and chimpanzee RBCs, only one reacted with night monkey and squirrel monkey. Only chimpanzee RBCs bound a significant amount of the anti-Fy3 mAb. Fy3 was also poorly detected on RBCs from gorilla, baboon and rhesus monkey, but not from new world monkeys. Alignment of DARC homologous sequences allowed us to construct a phylogenetic tree in which all branchings were in accordance with current knowledge of primate phylogeny. Although DARC was expected to be under strong internal and external selection pressure, in order to maintain chemokine binding and avoid Plasmodium vivax binding, respectively, our present study did not provide arguments in favor of a selection pressure on the extracellular domains involved in ligand specificity. The amino acid variability of DARC-like polypeptides was found to be well correlated with the hydrophylicity indexes, with the highest divergence on the amino-terminal extracellular domain. Analysis of the deduced amino acid sequences highlighted the conservation of some amino acid residues, which should prove to be critical for the structural and functional properties of DARC.
Resumo:
Genomic sequence comparison across species has enabled the elucidation of important coding and regulatory sequences encoded within DNA. Of particular interest are the noncoding regulatory sequences, which influence gene transcriptional and posttranscriptional processes. A phylogenetic footprinting strategy was employed to identify noncoding conservation patterns of 39 human and bovine orthologous genes. Seventy-three conserved noncoding sequences were identified that shared greater than 70% identity over at least 100 bp. Thirteen of these conserved sequences were also identified in the mouse genome. Evolutionary conservation of noncoding sequences across diverse species may have functional significance, and these conserved sequences may be good candidates for regulatory elements.
Resumo:
Toadlets of the genus Brachycephalus are endemic to the Atlantic rainforests of southeastern and southern Brazil. The 14 species currently described have snout-vent lengths less than 18. mm and are thought to have evolved through miniaturization: an evolutionary process leading to an extremely small adult body size. Here, we present the first comprehensive phylogenetic analysis for Brachycephalus, using a multilocus approach based on two nuclear (Rag-1 and Tyr) and three mitochondrial (Cyt b, 12S, and 16S rRNA) gene regions. Phylogenetic relationships were inferred using a partitioned Bayesian analysis of concatenated sequences and the hierarchical Bayesian method (BEST) that estimates species trees based on the multispecies coalescent model. Individual gene trees showed conflict and also varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. The concatenated gene tree was completely resolved and is identical in topology and degree of statistical support to the individual mtDNA gene tree. On the other hand, the BEST species tree showed reduced significant node support relative to the concatenate tree and recovered a basal trichotomy, although some bipartitions were significantly supported at the tips of the species tree. Comparison of the log likelihoods for the concatenated and BEST trees suggests that the method implemented in BEST explains the multilocus data for Brachycephalus better than the Bayesian analysis of concatenated data. Landmark-based geometric morphometrics revealed marked variation in cranial shape between the species of Brachycephalus. In addition, a statistically significant association was demonstrated between variation in cranial shape and genetic distances estimated from the mtDNA and nuclear loci. Notably, B. ephippium and B. garbeana that are predicted to be sister-species in the individual and concatenated gene trees and the BEST species tree share an evolutionary novelty, the hyperossified dorsal plate. © 2011 Elsevier Inc.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A substantial fraction of the eukaryotic genome consists of repetitive DNA sequences that include satellites, minisatellites, microsatellites, and transposable elements. Although extensively studied for the past three decades, the molecular forces that generate, propagate and maintain repetitive DNAs in the genomes are still discussed. To further understand the dynamics and the mechanisms of evolution of repetitive DNAs in vertebrate genome, we searched for repetitive sequences in the genome of the fish species Hoplias malabaricus. A satellite sequence, named 5SHindIII-DNA, which has a conspicuous similarity with 5S rRNA genes and spacers was identified. FISH experiments showed that the 5S rRNA bona fide gene repeats were clustered in the interstitial position of two chromosome pairs of H. malabaricus, while the satellite 5SHindIII-DNA sequences were clustered in the centromeric position in nine chromosome pairs of the species. The presence of the 5SHindIII-DNA sequences in the centromeres of several chromosomes indicates that this satellite family probably escaped from the selective pressure that maintains the structure and organization of the 5S rDNA repeats and become disperse into the genome. Although it is not feasible to explain how this sequence has been maintained in the centromeric regions, it is possible to hypothesize that it may be involved in some structural or functional role of the centromere organization.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Partial cDNA sequences of myosin V from rainbow trout Oncorhynchus mykiss were analyzed and showed high similarity to MVa from other vertebrates. Phylogenetic analysis has shown that events resulting in the formation of paralogous copies of myosin Va, Vb, and Vc occurred before the divergence of vertebrates into different classes. Expression analysis of myosin Va, Vb, and Vc in different O. mykiss tissues revealed MVa exclusively expressed in hypophysis and brain whereas Vb and Vc were expressed in practically all tissues analyzed. The nucleotide sequence for myosin V was explored in a fish species for the first time and these results represent an important start in understanding the organization, evolution, and expression of myosins in early vertebrates. The data presented here represent contributions to the knowledge of rainbow trout genome. A better understanding of this economically important species could assist in development of improved strains of this fish for aquaculture.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The recent evolution of Plasmodium falciparum is at odds with the extensive polymorphism found in most genes coding for antigens. Here, we examined the patterns and putative mechanisms of sequence diversification in the merozoite surface protein-2 (MSP-2), a major malarial repetitive surface antigen. We compared the msp-2 gene sequences from closely related clones derived from sympatric parasite isolates from Brazilian Amazonia and used microsatellite typing to examine, in these same clones, the haplotype background of chromosome 2, where msp-2 is located. We found examples of msp-2 sequence rearrangements putatively created by nonreciprocal recombinational events, such as replication slippage and gene conversion, while maintaining the chromosome haplotype. We conclude that these nonreciprocal recombination events may represent a major source of antigenic diversity in MSP-2 in P falciparum populations with low rates of classical meiotic recombination. (c) 2006 Elsevier B.V. All rights reserved.