34 resultados para SATELLITE
Resumo:
The primary objective of this study was to estimate the amount of gas not emitted into the air in areas cultivated with sugarcane (Saccharum officinarum) that were mechanically harvested. Satellite images CBERS-2/CCD, from 08-13-2004, 08-14-2005, 08-15-2006 and 08-16-2007, of northwestern São Paulo State were processed using the Geographic Information System (GIS)-IDRISI 15.0. Areas of interest (the mechanically-harvested sugarcane fields) were identified and quantified based on the spectral response of the bands studied. Based on these data, the amount of gas that was not emitted was evaluated, according to the estimate equation proposed by the Intergovernmental Panel on Climate Change (IPCC). The results of 396.65 km(2) (5.91% for 2004); 447.56 km(2) (6.67% for 2005); 511.54 km(2) (7.62% in 2006); and 474.60 km(2) (7.07% for 2007), calculated from a total area of 6,710.89 km(2) with sugarcane, showed a significant increase of mechanical harvesting in the study area and a reduction of gas emissions of more than 300,000 t yr(-1).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A satellite DNA sequence of Parodon hilarii ( named pPh2004) was isolated, cloned and sequenced. This satellite DNA is composed of 200 bp, 60% AT rich. In situ hybridization ( FISH) results revealed that the satellite DNA pPh2004 is located in the terminal regions of several chromosomes, forming highly evident blocks in some and punctual marks in others. The comparison between the FISH and C-banding results showed that the location of this satellite DNA coincides with that of most terminal heterochromatins. However, some regions are only marked by FISH whereas other regions are only marked by C-banding. The possible existence of more than one satellite DNA family could explain these partial differences. The in situ hybridization with the satellite DNA and the G- and C-bandings confirmed the presence of a sex chromosome system of the ZZ/ZW type in P. hilarii, as well as the correct identification of the Z chromosome in the karyotype. This chromosome displays a segment of terminal heterochromatin in the long arm, similar to the segment observed in the short arm of the W chromosome, also showing a G- banding pattern similar to that of the short arm and part of the long arm of the W chromosome. A hypothesis on the origin of the W chromosome from an ancestral chromosome similar to the Z chromosome is presented.
Resumo:
The rotational motion of an artificial satellite is studied by considering torques produced by gravity gradient and direct solar radiation pressure. A satellite of circular cylinder shape is considered here, and Andoyers variables are used to describe the rotational motion. Expressions for direct solar radiation torque are derived. When the earth's shadow is not considered, an analytical solution is obtained using Lagrange's method of variation of parameters. A semi-analytical procedure is proposed to predict the satellite's attitude under the influence of the earth's shadow. The analytical solution shows that angular variables are linear and periodic functions of time while their conjugates suffer only periodic variations. When compared, numerical and analytical solutions have a good agreement during the time range considered.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Agarose gels stained with Ethidium bromide and Southern blot experiments of HindIII-digested genomic DNA of Achirus lineatus evidenced the presence of monomers and multimers of a DNA segment of about 200 bp, named here Al-HindIII sequence. No signals were observed in Southern blot experiments with genomic DNA of other flatfish species. The DNA sequencing of four recombinant clones showed that Al-HindIII sequences had 204 bp and were 63.72% AT-rich. FISH experiments using a Al-HindIII sequence as probe showed bright signals in the centromeric position of all chromosomes of A. lineatus.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the effects of Jupiter mass growth in order to permanently capture prograde satellites. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time while considering the decrease in Jupiter's mass. We considered the particle's initial conditions to be prograde, at pericenter, in the region 100R(4) <= a <= 400R(4) and 0 <= e <= 0.5. The results give Jupiter's mass at the moment when the particle escapes from the planet. Such values give an indication of the conditions that are necessary for capture. An analysis of these results shows that prograde satellite capture is more complex than a retrograde one. It occurs in a two-step process. First, when the particles get inside about 0.85R(Hill) (Hills' radius), they become weakly bound to Jupiter. Then, they keep migrating toward the planet with a strong decrease in eccentricity, while the planet is growing. The radial oscillation of the particles reduces significantly when they reach a radial distance that is less than about 0.45R(Hill) from the planet. Three-dimensional simulations for the known prograde satellites of Jupiter were performed. The results indicate that Leda, Himalia, Lysithea, and Elara could have been permanently captured when Jupiter had between 50% and 60% of its present mass.
Resumo:
Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L-1 indicates that mass accretion provides an increase of the confinement region ( delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M-4. We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R-4 less than or equal to a less than or equal to 400 R-4 and 0 less than or equal to e < 0.5. The results give Jupiter's mass at the moment when the particle escapes from the planet. Such values are an indication of the necessary conditions that could provide capture. An analysis of these results shows that retrograde satellites would be captured as soon as they get inside the Hills' radius and after that they keep migrating toward the planet while it is growing. For the region where the orbits of the four old retrograde satellites of Jupiter ( Ananke, Carme, Pasiphae and Sinope) are located we found that such satellites could have been permanently captured when Jupiter had between 62% and 93% of its present mass.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A computer program, PhotoLin, written for an IBM-PC-compatible microcomputer is described which detects linear features in aerial photographs, satellite images and topographic maps. The program accepts images saved to PCX files as input and applies noise correction and smoothing filters and thinning routines. The output consists of a skeleton containing the median lines of linear features which can be represented on a map. The branches of the skeleton can be broken into sections of constant length for which the mean orientations are obtained for the preparation of rose diagrams. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
An analytical approach for the spin stabilized satellite attitude propagation is presented using the non-singular canonical variables to describe the rotational motion. Two sets of variables were introduced for Fukushima in 1994 by a canonical transformation and they are useful when the angle between z-satellite axis of a coordinate system fixed in artificial satellite and the rotational angular momentum vector is zero or when the angle between Z-equatorial axis and rotation angular momentum vector is zero. Analytical solutions for rotational motion equations and torque-free motion are discussed in terms of the elliptic functions and by the application of some simplification to get an approximated solution. These solutions are compared with a numerical solution and the results show a good agreement for many rotation periods. When the mean Hamiltonian associated with the gravity gradient torque is included, an analytical solution is obtained by the application of the successive approximations' method for the satellite in an elliptical orbit. These solutions show that the magnitude of the rotation angular moment is not affected by the gravity gradient torque but this torque causes linear and periodic variations in the angular variables, long and short periodic variations in Z-equatorial component of the rotation angular moment and short periodic variations in x-satellite component of the rotation angular moment. The goal of this analysis is to emphasize the geometrical and physical meaning of the non-singular variables and to validate the approximated analytical solution for the rotational motion without elliptic functions for a non-symmetrical satellite. The analysis can be applied for spin stabilized satellite and in this case the general solution and the approximated solution are coincidence. Then the results can be used in analysis of the space mission of the Brazilian Satellites. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.