84 resultados para Resin composites
Resumo:
Purpose: The aim of this study was to evaluate the surface roughness and the in vitro adherence of Streptococcus mutans to indirect aesthetic restorative materials that are uncoated with saliva.Materials and Methods: Four groups of restorative materials were evaluated according to material type: (1) microparticulate feldspathic ceramic; (2) leucite-reinforced feldspathic ceramic; (3) microhybrid resin composite and (4) microfilled resin composite. Twenty standardised samples of each material were produced. Roughness analysis (Ra, n = 10) was performed using a roughness analyser. Adhesion tests (n = 10) were carried out in 24-well plates; colony-forming units (CFU/mL) were evaluated. The mean values of roughness (mu m) and adherence (CFU/mL) for each group were subjected to an analysis of variance and a Tukey test.Results: The leucite-reinforced feldspathic ceramic was rougher and presented higher bacterial adherence than the microparticulate feldspathic ceramic. The resin composites were similar with regard to surface roughness and bacterial adherence.Conclusions: The microhybrid and microfilled resin composites were similar and the leucite-reinforced feldspathic ceramic was rougher and presented higher bacterial adherence than the microparticulate feldspathic ceramic.
Resumo:
Purpose: This study evaluated the degree of conversion (DC) of four indirect resin composites (IRCs) with various compositions processed in different polymerization units and investigated the effect of thermal aging on the flexural strength and Vicker's microhardness.Materials and Methods: Specimens were prepared from four IRC materials, namely Gr 1: Resilab (Wilcos); Gr2: Sinfony (3M ESPE); Gr3: VITA VMLC (VITA Zahnfabrik); Gr4: VITA Zeta (VITA Zahnfabrik) using special molds for flexural strength test (N = 80, n = 10 per group) (25 x 2 x 2 mm(3), ISO 4049), for Vicker's microhardness test (N = 80, n = 10 per group) (5 x 4 mm(2)) and for DC (N = 10) using FT-Raman Spectroscopy. For both flexural strength and microhardness tests, half of the specimens were randomly stored in distilled water at 37 degrees C for 24 hours (Groups 1 to 4), and the other half (Groups 5 to 8) were subjected to thermocycling (5000 cycles, 5 to 55 +/- 1 degrees C, dwell time: 30 seconds). Flexural strength was measured in a universal testing machine (crosshead speed: 0.8 mm/min). Microhardness test was performed at 50 g. The data were analyzed using one-way and two-way ANOVA and Tukey's test (alpha = 0.05). The correlation between flexural strength and microhardness was evaluated with Pearson's correlation test (alpha = 0.05).Results: A significant effect for the type of IRC and thermocycling was found (p = 0.001, p = 0.001) on the flexural strength results, but thermocycling did not significantly affect the microhardness results (p = 0.078). The interaction factors were significant for both flexural strength and microhardness parameters (p = 0.001 and 0.002, respectively). Thermocycling decreased the flexural strength of the three IRCs tested significantly (p < 0.05), except for VITA Zeta (106.3 +/- 9.1 to 97.2 +/- 14 MPa) (p > 0.05) when compared with nonthermocycled groups. Microhardness results of only Sinfony were significantly affected by thermocycling (25.1 +/- 2.1 to 31 +/- 3.3 Kg/mm(2)). DC values ranged between 63% and 81%, and were not significantly different between the IRCs (p > 0.05). While a positive correlation was found between flexural strength and microhardness without (r = 0.309) and with thermocycling (r = 0.100) for VITA VMLC, negative correlations were found for Resilab under the same conditions (r = -0.190 and -0.305, respectively) (Pearson's correlation coefficient).Conclusion: Although all four IRCs presented nonsignificant DC values, flexural strength and microhardness values varied between materials with and without thermocycling.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
OBJECTIVE: This study evaluated the efficiency of repolishing, sealing with surface sealant, and the joining of both in decreasing the surface roughness of resin-based composites after a toothbrushing process. METHOD AND MATERIALS: Ten specimens of each composite (Alert, Z100, Definite, and Prodigy Condensable), measuring 2 mm in thickness and 4 mm in diameter, were made and submitted to finishing and polishing processes on both sides of the specimens using the Sof-Lex system. The specimens were then subjected to toothbrushing (30,000 cycles), and surface roughness (Ra) was analyzed with a Surfcorder SE 1700 profilometer. The upper surface of each composite was etched with 37% phosphoric acid, and the surface-penetrating sealant Protect-it was applied on 1 surface. The roughness of these surfaces was again measured. On the other side, the surface of the specimen was repolished, and the efficiency of this procedure was measured using the profilometer. The surface roughness resulting from the joining of the 2 methods was verified by applying, in the final stage, the surface-penetrating sealant on the repolished surface. Data were analyzed with analysis of variance and Tukey test (P <.05). RESULTS: Results showed that the lowest surface roughness values were obtained for Definite, Z100, and Prodigy Condensable after the repolishing process and after the repolishing plus sealing. For Alert, the joining of repolishing plus sealing promoted the lowest values of surface roughness. CONCLUSION: Of the resin-based composites, Alert demonstrated the highest values of surface roughness in all the techniques tested.
Resumo:
Owing to improvements in its mechanical properties and to the availability of shade and translucence resources, resin composite has become one of the most widely used restorative materials in present day Dentistry. The aim of this study was to assess the relation between the surface hardness of seven different commercial brands of resin composites (Charisma, Fill Magic, Master Fill, Natural Look, Opallis, Tetric Ceram, and Z250) and the different degrees of translucence (translucid, enamel and dentin). Vickers microhardness testing revealed significant differences among the groups. Z250 was the commercial brand that showed the best performance in the hardness test. When comparing the three groups assessed within the same brand, only Master Fill and Fill Magic presented statistically significant differences among all of the different translucencies. Natural Look was the only one that showed no significant difference among any of the three groups. Charisma, Opallis, Tetric Ceram and Z250 showed significant differences among some of the tested groups. Based on the results found in this study, it was not possible to establish a relation between translucence and the microhardness of the resin composites assessed. Depending on the material assessed, however, translucence variation did affect the microhardness values of the resin composites.
Resumo:
Objectives: This study evaluated the microtensile bond strength (MTBS) of non-aged and aged resin-based composites (RBC) (nanohybrid and nanofilled) after two surface conditioning methods, repaired using the composite of the same kind or a microhybrid composite. Materials and methods: Nanohybrid (Tetric EvoCeram-TE) and nanofilled (Filtek Supreme-FS) RBC blocks (5 × 5 × 6 mm) (N = 128) were fabricated and randomly divided into two groups: (a) no ageing (control group) and (b) ageing (5.000 thermocycling, 5-55 °C). RBC surfaces were polished by up to 1,200-grit silicone carbide papers and conditioned with either (a) air abrasion with 30-μm SiO2 particles (CoJet Sand) for 4 s + silane coupling agent (ESPE-Sil) + adhesive resin (VisioBond) (n = 16) or (b) adhesive application only (Multilink A+B for TE; Adper ScotchBond 1XT for FS) (n = 16). In half of the groups, repair resin of the same kind with the RBC and, in the other half, a different kind of composite (microhybrid, Quadrant Anterior Shine-AS) with its corresponding adhesive (Quadrant UniBond) was used. The specimens were submitted to MTBS test (0.5 mm/min). Data were analysed using three-way ANOVA and Tukey's tests. Degree of conversion (DC) of non-aged and aged resin composites (TE, FS) (n = 3 per group) was measured by micro-Raman analyses. Results: RBC type (p = 0.001) and ageing affected the MTBS results significantly (p = 0.001). Surface conditioning type did not show significant difference (p = 0.726), but less number of pre-test failures was experienced with the CoJet system compared to adhesive resin application only. Repair strength on aged TE showed significantly less (p < 0.05) MTBS than for FS. FS repaired with the same kind of RBC and adhesive resin presented the highest cohesive failures (43 %). DC was higher for TE (71 %) than for FS (58 %) before ageing. Conclusion: On the aged RBCs, less favourable repair strength could be expected especially for nanohybrid composite. For repair actions, RBC surface conditioning could be accomplished with either adhesive resin application only or with CoJet system, providing that the latter resulted in less pre-test failures. Clinical relevance: Clinicians could condition the resin surface prior to repair or relayering with either CoJet system or adhesive resin application only, depending on the availability of the system. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
This study evaluated the spin concentration and the crystallinity in different classifications of dental composites as a function of the material condition (new, aged and expired). Specimens were obtained according to the factors: composites: Filtek P60, Filtek Z250, Filtek Z350XT, and Filtek Silorane; and material conditions: new, aged, and expired. The syringe composites underwent an accelerated aging protocol (Arrhenius model). The magnetic properties of the composites were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) was calculated. The crystallinity of the composites tested was characterized with X-ray diffraction (XRD). Filtek P60 and Filtek Z250 presented similarities in terms of spin concentration and crystallinity, irrespective of the material condition. The aging protocol influenced the composite Filmic Z350XT that exhibited a significant increase in the spin concentration. Besides, lower intensity peaks of the organic matrix and amorphous silica were also observed for both aged and expired Filtek Z350XT. Although a significant lower spin concentration was observed for the silorane composite in comparison to that of the methacrylates, a decrease in the relative intensity of peaks of the amorphous region related to the organic components in the diffractograms was observed. The material conditions tested influence the crystallinity and the magnetic properties of the composites evaluated. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the effect of the addition of sodium trimetaphosphate (TMP) with or without fluoride on enamel demineralization, and the hardness and release of fluoride and TMP of resin composites. Methods: Bovine enamel slabs (4x3x3 mm) were prepared and selected based on initial surface hardness (n= 96). Eight experimental resin composites were formulated, according to the combination of TMP and sodium fluoride (NaF): TMP/NaF-free (control), 1.6% sodium fluoride (NaF), and 1.5%, 14.1% and 36.8% TMP with and without 1.6% NaF. Resin composite specimens (n= 24) were attached to the enamel slabs with wax and the sets were subjected to pH cycling. Next, surface and cross-sectional hardness and fluoride content of enamel as well as fluoride and TNT release and hardness of the materials were evaluated. Data were statistically analyzed using ANOVA (P< 0.05). Results: The presence of fluoride in enamel was similar in fluoridated resin composites (P> 0.05), but higher than in the other materials (P< 0.05). The combination of 14.1% TMP and fluoride resulted in less demineralization, especially on lesion surface (P< 0.05). The presence of TMP increased fluoride release from the materials and reduced their hardness.
Resumo:
This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: A restorative material for Class III cavities must, besides being functional, be esthetically satisfactory, providing good working conditions and several shade and color options. A clinical evaluation was initiated to compare the suitability of resin composite and glass-ionomer cement materials for such restorations.Method and materials: Forty-two Class III conservative cavities, esthetically important because of facial extensions, were selected. Resin composite restorations were placed in 21 cavities, and the remaining 21 were restored with glass-ionomer cement. The following characteristics were studied: color or-esthetics, anatomic shape, surface texture, staining, marginal infiltration, dental plaque retention, and occurrence of fracture. After 24 months, the restorations were evaluated.Results: the only statistically significant difference between the resin composite and glass-ionomer cement restorations in the experimental period involved color or esthetics.Conclusion: Resin composites and glass-ionomer materials provide excellent functional and esthetic results in Class III cavities when properly indicated.
Resumo:
The purpose of this study was to evaluate the effect of pre-heating resin composite photo-cured with light-curing units (LCU) by FT-IR. Twenty specimens were made in a metallic mold (4 mm diameter × 2 mm thick) from composite resin-Tetric Ceram® (Ivoclar/Vivadent) at room temperature (25°C) and pre-heated to 37, 54, and 60°C. The specimens were cured with halogen curing light (QTH) and light emitted by diodes (LED) during 40 s. Then, the specimens were pulverized, pressed with KBr and analyzed with FT-IR. The data were submitted to statistical analysis of variance and Kruskal-Wallis test. Study data showed no statistically significant difference to the degree of conversion for the different light curing units (QTH and LED) (p > 0.05). With the increase of temperature there was significant increase in the degree of conversion (p < 0.05). In this study were not found evidence that the light curing unit and temperature influenced the degree of conversion. © 2010 Pleiades Publishing, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the effect of cycling various pH demineralizing solutions on the surface hardness, fluoride release and surface properties of restorative materials (Ketac-Fil Plus, Vitremer, Fuji II LC, Freedom and Fluorofil). Thirty specimens of each material were made and the surface hardness measured. The specimens were randomized into five groups according to the pH (4.3; 4.6; 5.0; 5.5 and 6.2) of the demineralizing solution. The specimens were submitted to pH-cycling for 15 days. The specimens remained in the demineralizing solution for six hours and in the remineralizing solution for 18 hours. Then, the surface hardness (SH) was remeasured and the surface properties were assessed. Fluoride release was determined daily. Data from SH and the percentage of alteration in surface hardness were analyzed by analysis of variance (p < 0.05); the Kruskal-Wallis test was performed for the fluoride release results. When hardness was compared, the variation in pH led to a positive correlation for glass ionomer cements and a negative correlation for fluoride release. For polyacid-modified resin composites, a negative correlation was found with regards to fluoride release; no significant correlation was observed for hardness. Surface properties were influenced: an acidic pH led to a greater alteration, except for polyacid-modified resin composites. The pH of the demineralizing solution influenced fluoride release from the tested materials. The pH variation altered hardness and surface properties of glass ionomer cements but did not influence polyacid-modified resin composites.