151 resultados para Redes neurais ARTMAP nebulosa
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As análises de agrupamento e de componentes principais e as redes neurais artificiais foram utilizadas na determinação de padrões de comportamento das populações de macrófitas aquáticas que colonizaram o reservatório de Santana, Piraí-RJ, durante o ano de 2004. As análises de agrupamento dividiram o comportamento das populações durante o ano em dois grupos distintos, apresentando um padrão no primeiro semestre que difere daquele observado no segundo semestre do ano. A análise de componentes principais demonstrou que esse comportamento da comunidade (grupo de populações) é influenciado principalmente pelas espécies S. montevidensis, Heteranthera reniformis, Ludwigia sp., Rhynchospora aurea, C. iria, C. ferax e Aeschynomene denticulata no primeiro grupo e por Echinochloa polystachya, Polygonum lapathifolium, Alternanthera phyloxeroides, Pistia stratiotes, Eichhornia azurea, Brachiaria arrecta e Oxyscarium cubense no segundo grupo. As redes neurais artificiais agruparam as populações de macrófitas aquáticas em nove grupos, conforme sua densidade nos diferentes meses do ano. A aplicação da análise de componentes principais (ACP) nos valores de frequência das populações presentes nos primeiros três grupos de Kohonen permitiu discriminar três grupos de meses, cujas populações apresentaram características diferentes de colonização. A aplicação das redes neurais artificiais permitiu melhor discriminação dos meses e das espécies que compõem as comunidades correspondentes, quando utilizada a análise de componentes principais.
Resumo:
Investigaremos, a partir da perspectiva da Ciência Cognitiva, a noção de representação mental, no domínio da percepção visual humana. Ênfase é dada ao paradigma Conexionista, ou de Redes Neurais, de acordo com o qual tais representações mentais são descritas como estruturas emergentes da interação entre sistemas de processamento de informação que se auto-organizam - tais como o cérebro - e a luz estruturada no meio ambiente. Sugerimos que essa noção de representação mental indica uma solução para uma antiga polêmica, entre Representacionalistas e Eliminativistas, acerca da existência de representações mentais no sistema perceptual humano.
Resumo:
Sistemas baseados em redes neurais artificiais fornecem altas taxas de computação devido ao uso de um número massivo de elementos processadores simples. Redes neurais com conexões realimentadas fornecem um modelo computacional capaz de resolver uma rica classe de problemas de otimização. Este artigo apresenta uma nova abordagem para resolver problemas de otimização restrita utilizando redes neurais artificiais. Mais especificamente, uma rede de Hopfield modificada é desenvolvida cujos parâmetros internos são calculados usando a técnica de subespaço válido de soluções. A partir da obtenção destes parâmetros a rede tende a convergir aos pontos de equilíbrio que representam as possíveis soluções para o problema. Exemplos de simulação são apresentados para justificar a validade da abordagem proposta.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)