24 resultados para Protein dynamics
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study aimed describing the ovaries of the sugarcane spittlebug Mahanarva fimbriolata which are meroistic telotrophic with nurse cells and oocytes located in the tropharium. SEM revealed paired ovaries located dorsolaterally around the intestine, and oocytes exhibiting shapes ranging from round (less developed) to elliptic (more developed), suggesting a simultaneous, although, asynchronous development. Based on histological data we classified the oocytes in stages from I to V. Stage I oocytes exhibit follicular epithelium with cubic and/or prismatic cells, fine cytoplasmic granules. Stage II oocytes present intercellular spaces in the follicular epithelium due to the incorporation of yolk elements from the hemolymph. Small granules are present in the periphery of oocytes while larger granules are observed in the center. Stage III oocytes are larger and intercellular spaces in the follicular epithelium are evident, as well as the interface between follicular epithelium and oocyte. Yolk granules of different sizes are present in the cytoplasm. During this stage, chorion deposition initiates. Stage IV oocytes exhibit squamous follicular cells and larger intercellular spaces when compared to those observed in the previous stage. The oocyte cytoplasm present granular and viscous yolk, the latter is the result of the breakdown of granules. Stage V oocytes exhibit a follicular epithelium almost completely degenerated, smaller quantities of granular yolk and large amounts of viscous yolk. Based on our findings we established the sequence of yolk deposition in M. fimbriolata oocyte as follows: proteins and lipids, which are first produced by endogenous processes in stages I and II oocytes. Exogenous incorporation begins in stage III. In stages I and II oocytes, lipids are also produced by follicular epithelial cells. The third element to be deposited is polysaccharides, mainly found as complexes. Therefore, the yolk present in the oocytes of this species consists of glycolipoproteins. Molecular weights of proteins present in M. fimbriolata oocytes ranged from 10 to 92 KDa, differently from vitellogenin, the most common protein present in insect oocytes, weighing approximately 180 KDa. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objetivou-se com este trabalho avaliar a dinâmica ruminal de novilhos leiteiros recebendo dietas contendo grão de milho inteiro, milho moído na forma de quirera ou milho inteiro tratado com ureia. Para isso, foram mantidos em regime de confinamento seis animais fistulados no rúmen alimentados com dietas com teores semelhantes de energia e proteína. A dieta foi formulada com relação volumoso:concentrado de 40:60 na matéria seca e continha silagem de sorgo como volumoso. O delineamento utilizado foi na forma de um quadrado latino 3 × 3, com três animais e três períodos, e foi repetido duas ou quatro vezes conforme o parâmetro estudado, totalizando seis ou 12 repetições por dieta. O tratamento do grão de milho não influenciou o pH do líquido ruminal nem a degradabilidade ruminal da matéria seca, fibra em detergente ácido e celulose. Todas as dietas propiciaram concentração de N-amoniacal adequada para o crescimento microbiano ruminal; todavia, nos animais alimentados com grão de milho inteiro tratado com ureia, essa concentração foi significativamente menor. A atividade bacteriana é menor em animais alimentados com dietas contendo milho moído e não difere entre os animais alimentados com grão de milho inteiro ou grão de milho inteiro tratado com ureia.
Resumo:
Background: NEP1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis. Some NLPs induce a hypersensitive-like response in dicot plants though the basis for this response remains unclear. In addition, the spatial structure and the role of these highly conserved proteins are not known.Results: We predict a 3d-structure for the beta-rich section of the NLPs based on alignments, prediction tools and molecular dynamics. We calculated a consensus sequence from 42 NLPs proteins, predicted its secondary structure and obtained a high quality alignment of this structure and conserved residues with the two Cupin superfamily motifs. The conserved sequence GHRHDWE and several common residues, especially some conserved histidines, in NLPs match closely the two cupin motifs. Besides other common residues shared by dicot Auxin-Binding Proteins (ABPs) and NLPs, an additional conserved histidine found in all dicot ABPs was also found in all NLPs at the same position.Conclusion: We propose that the necrosis inducing protein class belongs to the Cupin superfamily. Based on the 3d-structure, we are proposing some possible functions for the NLPs.
Resumo:
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the reaction between shikimate 3-phosphate and phosphoenolpyruvate to form 5-enolpyruvylshikimate 3-phosphate, an intermediate in the shikimate pathway, which leads to the biosynthesis of aromatic amino acids. EPSPS exists in an open conformation in the absence of substrates and/or inhibitors and in a closed conformation when bound to the substrate and/or inhibitor. In the present report, the H/D exchange properties of EPSPS from Mycobacterium tuberculosis (Mt) were investigated for both enzyme conformations using ESI mass spectrometry and circular dichroism (CD). When the conformational changes identified by H/D exchanges were mapped on the 3-D structure, it was observed that the apoenzyme underwent extensive conformational changes due to glyphosate complexation, characterized by an increase in the content of alpha-helices from 40% to 57%, while the beta-sheet content decreased from 30% to 23%. These results indicate that the enzyme underwent a series of rearrangements of its secondary structure that were accompanied by a large decrease in solvent access to many different regions of the protein. This was attributed to the compaction of 71% of alpha-helices and 57% of beta-sheets as a consequence of glyphosate binding to the enzyme. Apparently, MtEPSPS undergoes a series of inhibitor-induced conformational changes, which seem to have caused synergistic effects in preventing solvent access to the core of molecule, especially in the cleft region. This may be part of the mechanism of inhibition of the enzyme, which is required to prevent the hydration of the substrate binding site and also to induce the cleft closure to avoid entrance of the substrates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oogenesis involves a sequense of transformations which are undergone by female germ cells. These cells change into oogonias and then into mature oocytes. Sexually mature females were collected monthly, during one year, from the Rio Sapucaí, tributary of the Rio Grande, which is part of the Furnas Reservoir system in the state of Minas Gerais. The observed material showed that oogonias were small spherical cells, had a big spherical nucleus, with a single nucleolus, and weakly stained cytoplasm with eosinophilic granules (FG stained), which indicate their protein content. The primary oocytes showed a big basophilic nucleus, with a large peripheral nucleolus, and several smaller nucleoli. They show a reduced cytoplasmic content. The previtellogenic oocytes presented voluminous cytoplasm and nucleus with several small peripheral nucleoli. The oocytes underwent vitellogenesis with the development of the zona radiata and the follicle cells. The zona radiata had two layers, the outer and the inner, which showed its protein content when stained with CM and FG techniques. TB pH 2.5 and pH 4.0 staining showed that oocytes undergoing vitellogenesis presented weakly stained cytoplasm and peripheral cytoplasmic vesicles. The follicle cells that were squamous became cuboidal. In mature oocytes, the yolk granules that filled the cytoplasm became green and blue when stained with FG and CM techniques, indicating their protein content. The perivitclline region showed rosy stained vesicles (TB pH 2.5 and pH 4.0) spread among the weakly stained peripheral vesicles, which seemed to be the cortical alveoli. The zona radiata cells, CM and FG stained, still showed two layers like the oocytes from the previous stage, but thicker.
Resumo:
We propose an approach to integrate the theory, simulations, and experiments in protein-folding kinetics. This is realized by measuring the mean and high-order moments of the first-passage time and its associated distribution. The full kinetics is revealed in the current theoretical framework through these measurements. In the experiments, information about the statistical properties of first-passage times can be obtained from the kinetic folding trajectories of single molecule experiments ( for example, fluorescence). Theoretical/simulation and experimental approaches can be directly related. We study in particular the temperature-varying kinetics to probe the underlying structure of the folding energy landscape. At high temperatures, exponential kinetics is observed; there are multiple parallel kinetic paths leading to the native state. At intermediate temperatures, nonexponential kinetics appears, revealing the nature of the distribution of local traps on the landscape and, as a result, discrete kinetic paths emerge. At very low temperatures, exponential kinetics is again observed; the dynamics on the underlying landscape is dominated by a single barrier. The ratio between first-passage-time moments is proposed to be a good variable to quantitatively probe these kinetic changes. The temperature-dependent kinetics is consistent with the strange kinetics found in folding dynamics experiments. The potential applications of the current results to single-molecule protein folding are discussed.
Resumo:
The American/Asian genotype of Dengue virus type 2 (DENV-2) was introduced into the Americas in the 80′s. Although there is no data showing when this genotype was first introduced into Brazil, it was first detected in Brazil in 1990. After which the virus spread throughout the country and major epidemics occurred in 1998, 2007/08 and 2010. In this study we sequenced 12 DENV-2 genomes obtained from serum samples of patients with dengue fever residing in São José do Rio Preto, São Paulo (SJRP/SP), Brazil, in 2008. The whole open reading frame or envelope sequences were used to perform phylogenetic, phylogeographic and evolutionary analyses. Isolates from SJRP/SP were grouped within one lineage (BR3) close to isolates from Rio de Janeiro, Brazil. Isolates from SJRP were probably introduced there at least in 2007, prior to its detection in the 2008 outbreak. DENV-2 circulation in Brazil is characterized by the introduction, displacement and circulation of three well-defined lineages in different times, most probably from the Caribbean. Thirty-seven unique amino acid substitutions were observed among the lineages, including seven amino acid differences in domains I to III of the envelope protein. Moreover, we dated here, for the first time, the introduction of American/Asian genotype into Brazil (lineage BR1) to 1988/89, followed by the introduction of lineages BR2 (1998-2000) and BR3 (2003-05). Our results show a delay between the introduction and detection of DENV-2 lineages in Brazil, reinforcing the importance and need for surveillance programs to detect and trace the evolution of these viruses. Additionally, Brazilian DENV-2 differed in genetic diversity, date of introduction and geographic origin and distribution in Brazil, and these are important factors for the evolution, dynamics and control of dengue. © 2013 Drumond et al.
Resumo:
Antimicrobial peptides (AMPs) isolated from several organisms have been receiving much attention due to some specific features that allow them to interact with, bind to, and disrupt cell membranes. The aim of this paper was to study the interactions between a membrane mimetic and the cationic AMP Ctx(Ile21)-Ha as well as analogues containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) incorporated at residue positions n = 0, 2, and 13. Circular dichroism studies showed that the peptides, except for [TOAC13]Ctx(Ile21)-Ha, are unstructured in aqueous solution but acquire different amounts of α-helical secondary structure in the presence of trifluorethanol and lysophosphocholine micelles. Fluorescence experiments indicated that all peptides were able to interact with LPC micelles. In addition, Ctx(Ile21)-Ha and [TOAC13]Ctx(Ile21)-Ha peptides presented similar water accessibility for the Trp residue located near the N-terminal sequence. Electron spin resonance experiments showed two spectral components for [TOAC0]Ctx(Ile21)-Ha, which are most likely due to two membrane-bound peptide conformations. In contrast, TOAC2 and TOAC13 derivatives presented a single spectral component corresponding to a strong immobilization of the probe. Thus, our findings allowed the description of the peptide topology in the membrane mimetic, where the N-terminal region is in dynamic equilibrium between an ordered, membrane-bound conformation and a disordered, mobile conformation; position 2 is most likely situated in the lipid polar head group region, and residue 13 is fully inserted into the hydrophobic core of the membrane. © 2013 Vicente et al.
Resumo:
The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. © 2013 Wiley Periodicals, Inc.