291 resultados para Physical exercise
Resumo:
Physical exercise and statins, recommended interventions to dyslipidaemia treatment, are independently related to cardiomyocytes alterations, characterized by miocardic hypertrophy and apoptosis, respectively. Thus, the objective of the present study was to analyze the effects of statin and aerobic physical exercise association in the morphometric parameters of cardiac cell nucleus. 40 male rats adults were divided into four groups: exercised (DE); sedentary (DS), exercised and statin use (DES); sedentary and statin use (DSS). The animals received during the whole experimental period a hiperlipidic diet added 20% of coconut oil and 1.25% of cholesterol; after 30 days of its ingestion, a blood collection was made to verify the dyslipidaemia. Simvastatin (20 mg) was taken five days a week, during eight weeks. During this period, the animals exercised 60 minutes daily in the treadmill. After the last day of the protocol, the cardiac muscle was collected and maintained in liquid nitrogen (-180 degrees C); the cuts were stained by Hematoxilin-Eosin method, and the cardiac fibers were submitted to the nuclear morphometric analyses. The data were analyzed using descriptive analyses, paired T test, Kruskal-Wallis test and Dunn post hoc test; for all analyses, it was adopted p<0.05. It was verified that the group receiving statin presented values statistically significant in comparison to the other groups, in the tridimensional and linear variables. The exercised and statin group, the values obtained in the morphometric analyses were similar to the control group. It is suggested that statins alone can cause alterations in the nucleus of cardiac cells that can be related to apoptosis occurrence and, when exercise is practiced associated to statin administration, the effects of statin can be reduced, what can be related to beneficial adaptations of cardiac mitochondrial in response to physical exercise, turning them more resistant to apoptotic stimuli.
Resumo:
Physical exercise and statins, which are recommended for the treatment of dyslipidemia, are independently associated to the occurrence of muscle injury. The objective is analyze the effect of aerobic exercise associated to the use of simvastatin on the morphology of the gastrocnemius muscle. Thirty Wistar rats were divided into six groups, two of which received a standard diet (1 sedentary and 1 exercised) and four (1 sedentary with medication, 1 sedentary without medication, 1 exercised with medication, 1 exercised without medication) received a hypercholesterolemic diet (standard diet with the addition of cholesterol and coconut oil). Simvastatin (20 mg/Kg) was administered five days a week for eight weeks, together with aerobic training on a treadmill (9.75 m/min) for 60 minutes a day. The gastrocnemius muscle was removed, sliced, stained with Hematoxylin-Eosin and submitted to a histochemical reaction to determine mitochondrial activity. The data were analyzed using a paired t-test, analysis of variance and Scheffe's post hoc test (p<0.05). Greater histological alterations were found in the medicated and exercised animals, with a greater frequency of occurrence as well. The histochemical analysis revealed that the medicated groups had fibers with more intensive mitochondrial activity alongside fibers with an absence of reaction. The morphometric analysis revealed no significant differences between groups. It is suggested that simvastatin is a medication that leads to the occurrence of muscle injury and its administration in association with physical activity may exacerbate these injuries. This finding may be related to cellular respiration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose of reviewPhysical exercise can be both beneficial and harmful for the gastrointestinal tract in a dose-effect relationship between its intensity and health. Mild-to-moderate intensity exercises play a protective role against colon cancer, diverticular disease, cholelithiasis and constipation, whereas acute strenuous exercise may provoke heartburn, nausea, vomiting, abdominal pain, diarrhea and even gastrointestinal bleeding. This review focuses on mechanisms involved in those symptoms and their associations with type of exercises in humans.Recent findingsOne quarter to one half of elite athletes are hampered by the gastrointestinal symptoms that may deter them from participation in training and competitive events. Vigorous exercise-induced gastrointestinal symptoms are often attributed to altered motility, mechanical factor or altered neuroimmunoendocrine secretions. Training, lifestyle modifications, meal composition, adequate hydration and avoidance of excessive use of some medications are the recommendations.SummaryStrenuous exercise and dehydrated states would be the causes of gastrointestinal symptoms referred by 70% of the athletes. Gut ischemia would be the main cause of nausea, vomiting, abdominal pain and (bloody) diarrhea. The frequency is almost twice as high during running than during other endurance sports as cycling or swimming and 1.5-3.0 times higher in the elite athletes than the recreational exercisers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study examined the interaction of hypercaloric diet (HD) and physical exercise on lipid profile and oxidative stress in serum and liver of rats. Male Wistar rats (60-days-old) were fed with a control (C) and hypercaloric diet (H). Each of the two dietary groups (C and H) was divided into three subgroups (n = 8), sedentary (CS and HS), exercised 2 days a week (CE2 and HE2) and exercised 5 days a week (CE5 and HE5). The swimming was selected as a model for exercise performance. After 8-weeks exercised rats showed decreased lactate dehydrogenase serum activities, demonstrating the effectiveness of the swimming as an aerobic-training protocol. Exercise 5-days a week reduced the body weight gain. Triacylglycerol (TG) and very low-density lipoprotein (VLDL-C) were increased in HD-fed rats. HE5 and CE5 rats had decreased TG, VLDL-C and cholesterol. HE2 rats had enhanced high-density lipoprotein (HDL-C) in serum. No alterations were observed in lipid hydroperoxide (LH), while total antioxidant substances (TAS) were increased in serum of exercised rats. HD-fed rats had hepatic TG accumulation. Superoxide dismutase activities were increased and catalase was decreased in liver of exercised rats. The interaction of HD and physical exercise reduced TAS and enhanced LH levels in hepatic tissue. In conclusion, this study confirmed the beneficial effect of physical exercise as a dyslipidemic-lowering component. Interaction of HD and physical exercise had discrepant effects on serum and liver oxidative stress. The interaction of HID and physical exercise reduced the oxidative stress in serum. HD and physical exercise interaction had pro-oxidant effect on hepatic tissue, suggesting that more studies should be done before using physical exercise as an adjunct therapy to reduce the adverse effects of HD. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study investigated the effects of swimming training and metformin on metabolic aspects of obese rats. Wistar rats were divided into control (C), obese (O), Trained Obese (TO) and metformin obese (MO) groups. Obesity was induced by subcutaneous monosodium glutamate injection (4 mg/g body weight). Exercise program consisted in swimming 1 h/day, 5 days/week, for 8 weeks, supporting a load corresponding to 5% of body weight. Metformin was dissolved in the drinking water (1.4 mg/ml) for 8 weeks. At the end of the experimental period, rats were sacrificed and blood was collected for determinations of serum glucose, insulin and triglycerides and hematocrit. Samples of gastrocnemius muscle and liver were removed to evaluate triglycerides content MSG-induced obesity, increased serum glucose, insulin and triglycerides, while physical training was able to recover serum glucose and insulin and metformin treatment recovered serum insulin and slightly reduced the serum glucose. MSG-induced obesity also increased liver triglycerides content and physical training and metformin administration recovered these parameters. It was concluded that in MSG obese rats, physical exercise and metformin induced important metabolic alterations associated with an improvement in glucose homeostasis and in liver fat content. Obesity and Metabolism 2009; 5: 129-133.
Resumo:
Background: Hyperhomocysteinemia is a major risk factor for cerebral and peripheral vascular diseases, as well as cortical and hippocampal injury, including an increased risk of dementia and cognitive impairment. Elevated serum homocysteine (Hcy) concentrations are common in patients with Parkinson's disease (PD) who have been treated with levodopa; however, physical exercises can help reduce Hcy concentrations. The aim of the present study was to compare serum Hcy levels in patients with PD who partook in regular physical exercises, sedentary PD patients, and healthy controls.Methods: Sixty individuals were enrolled in the present study across three groups: (i) 17 patients who did not partake of any type of exercise; (ii) 24 PD patients who exercised regularly; and (iii) 19 healthy individuals who did not exercise regularly. All participants were evaluated by Hoehn and Yahr scale, the Unified Parkinson's Disease Rating Scale (UPDRS) and Schwab and England scale (measure daily functionality). The serum levels of Hcy were analyzed by blood samples collected of each participant. An analysis of variance and a Tukey's post hoc test were applied to compare and to verify differences between groups. Pearson's correlation and stepwise multiple regression analyses were used to consider the association between several variables.Results: Mean plasma Hcy concentrations in individuals who exercised regularly were similar to those in the healthy controls and significantly lower than those in the group that did not exercise at all (P = 0.000). In addition, patients who did not exercise were receiving significantly higher doses of levodopa than those patients who exercised regularly (P = 0.001). A positive relationship between levodopa dose and Hcy concentrations (R(2) = 0.27; P = 0.03) was observed in patients who did not exercise, but not in those patients who exercised regularly (R(2) = 0.023; P = 0.15).Conclusions: The results of the present study suggest that, even with regular levodopa therapy, Hcy concentrations in PD patients who exercise regularly are significantly lower than in patients who do not exercise and are similar Hcy concentrations in healthy controls.