636 resultados para Parâmetros dimensionais
Resumo:
Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Brachiaria decumbens Stapf. e Brachiaria brizantha (Hochst.) Stapf., estudaram-se correlações entre a área foliar real (Sf) e parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as equações, exponenciais, geométricas ou lineares simples, permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de B. decumbens pode ser feita pela fórmula Sf = 0,9810 x (C x L), ou seja, 98,10% do produto entre o comprimento ao longo da nervura principal e a largura máxima, enquanto que, para a B. brizantha a estimativa da área foliar pode ser feita pela fórmula SF = 0,7468 x (C x L), ou seja 74,68% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.
Resumo:
Com o objetivo de obter uma equação matemática que, através de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Cissampelos glaberrima, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L) perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da falsa parreira-brava. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,7878 x (C x L), que equivale a tomar 78,78% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com coeficiente de correlação de 0,9307.
Resumo:
Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Brachiaria plantaginea, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar do capim-marmelada. do ponto de vista prático, deve-se optar pela equação linear simples, envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,7338 x (C x L), o que equivale a tomar 73,38% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,8754.
Resumo:
Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Ipomoea hederifolia e Ipomoea nil, estudaram-se correlações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as - equações exponenciais, geométricas ou lineares simples - permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de I. hederifolia pode ser feita pela fórmula Sf = 0,7583 x (C x L), ou seja, 75,83% do produto entre o comprimento ao longo da nervura principal e a largura máxima, ao passo que, para I. nil, a estimativa da área foliar pode ser feita pela fórmula Sf = 0,6122 x (C x L), ou seja, 61,22% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.
Resumo:
A estimativa da área foliar pode auxiliar na compreensão de relações de interferência entre plantas daninhas e cultivadas. Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Sida cordifolia e Sida rhombifolia, estudaram-se as correlações entre área foliar real (Af) e parâmetros dimensionais do limbo foliar, como o comprimento (C) ao longo da nervura principal e a largura máxima (L) perpendicular à nervura principal. Foram analisados 200 limbos foliares de cada espécie, coletados em diferentes agroecossistemas na Universidade Estadual Paulista, campus de Jaboticabal. Os modelos estatísticos utilizados foram linear: Y = a + bx; linear simples: Y = bx; geométrico: Y = ax b; e exponencial: Y = ab x. Todos os modelos analisados podem ser empregados para estimação da área foliar de S. cordifolia e S. rhombifolia. Sugere-se optar pela equação linear simples, envolvendo o produto C*L, considerando-se o coeficiente linear igual a zero, em função da praticidade desta. Desse modo, a estimativa da área foliar de S. cordifolia pode ser obtida pela fórmula Af = 0,7878*(C*L), com coeficiente de determinação de 0,9307, enquanto para S. rhombifolia a estimativa da área foliar pode ser obtida pela fórmula Af = 0,6423*(C*L), com coeficiente de determinação de 0,9711.
Resumo:
Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Typha latifolia, estudaram-se relações entre a área foliar real (Sf) e parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da taboa. do ponto de vista prático, sugere-se optar pela equação linear simples que envolve o produto C x L, usando-se a equação de regressão Sf = 0,9651 x (C x L), que equivale a tomar 96,51% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,9411.
Resumo:
Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Tridax procumbens, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da erva-de-touro. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,6008 x (C x L), que equivale a tomar 60,08% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,8731.
Resumo:
The objective of this work was to study the dimensional parameters of the drainage net using 12 third-order ramification hydrological watersheds: 4 watersheds per soil unit (LVA, RL and RQ). The soil distinction was realized using ''t'' test to verify the orthogonal contrast among three soil averages and the grouping analysis and mean components. The results showed that the multivariance analysis was not able to discriminate three soils using the dimensional analysis. The t test of this isolated variable allowed discriminating RQ soil from LVA and RL soil units; but it was not sensitive to discriminate the LVA soil and RL unit.
Resumo:
Leaf area estimate may contribute to understand the relationships of interference among weeds and crops. The objective of this research was to obtain a mathematical equation to estimate the leaf area of Euphorbia heterophylla based on linear measures of the leaf blade. Correlation studies were carried out using the real leaf area and leaf length (C) and the maximum leaf width (L) of 200 leaf blades which were collected from several agroecosystems at Universidade Estadual Paulista in Jaboticabal, SP, Brazil. The evaluated statistic models were: linear Y = a + bx; simple linear Y = bx; geometric Y = ax b; and exponential Y = ab x. All of the evaluated models can be used for E. heterophylla leaf area estimation. The simple linear regression model is suggested using C*L and taking the linear coefficient equal to zero. Thus, an estimate of the leaf area of E. heterophylla can be obtained using the equation Af' = 0.6816*(C*L).
Resumo:
The objective of this study was to obtain a mathematical equation to estimate the leaf area of Panicum maximum using linear measures of leaf blade. Correlation studies were conducted involving the real leaf area (Sf), the main vein leaf length (C), and the maximum leaf width (L). The linear and geometric equations related to C provided good leaf area estimates. For practical reasons, the use of an equation involving only the C*L product is suggested. Thus, an estimate of P. maximum leaf area can be obtained by the equation Sf = 0.6058 (C*L), with the coefficient of determination R = 0.8586.
Resumo:
The morphometric characterization of watersheds is of great importance in assisting the planning of these areas to preserve the environment and maintain the quantity and quality of water production. The aim of this study was to characterize the morphology and simulate the areas of permanent preservation according to the Brazilian Forest Code of watershed of the Água-Fria stream. The studied area is located in the municipality of Bofete-SP, between the geographic coordinates: 48° 09' 30" to 48° 18' 30" longitude (WGr) and 22° 58' 30" to 23° 04' 30" latitude S. The results showed a 5th order micro watershed with an area of 152.43 km2 and low drainage density of 1.04 km/km2. Circularity was 0.51 and form factor was 0.41, which is considered low, and therefore with an oblong/oval shape. The sinuosity index of 1.29 revealed a tendency of rectilinear channels with compactness coefficient value of 1.38 and distance of runoff flow of 520m. Simulation of areas of permanent preservation shows an ideal model as the way springs and watercourses should be protected according to the Brazilian Forest Code, amounting to an area of 10.02 km2.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)