351 resultados para NACL INTAKE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibitory serotonergic and cholecystokinergic mechanisms in the lateral parabrachial nucleus and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. In the present study we investigated if the GABA(A) receptors in the lateral parabrachial nucleus are involved in the control of water, NaCl and food intake in rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. Bilateral injections of muscimol (0.2 nmol/0.2 mu l) into the lateral parabrachial nucleus strongly increased 0.3 M NaCl (20.3 +/- 7.2 vs. saline: 2.6 +/- 0.9 ml/180 min) without changing water intake induced by the treatment with the diuretic furosemide combined with low dose of the angiotensin converting enzyme inhibitor captopril s.c. In euhydrated and satiated rats, bilateral lateral parabrachial nucleus injections of muscimol (0.2 and 0.5 nmol/0.2 0) induced 0.3 M NaCl intake (12.1 +/- 6.5 and 32.5 +/- 7.3 ml/180 min, respectively, vs. saline: 0.4 +/- 0.2 ml/180 min) and water intake (5.2 +/- 2.0 and 7.6 +/- 2.8 ml/ 180 min, respectively, vs. saline: 0.8 +/- 0.4 ml/180 min), but no food intake (2 +/- 0.4 g/240 min vs. saline: 1 +/- 0.3 g/240 min). Bilateral lateral parabrachial nucleus injections of the GABAA antagonist bicuculline (1.6 nmol/0.2 mu l) abolished the effects of muscimol (0.5 nmol/0.2 mu l) on 0.3 M NaCl and water intake. Muscimol (0.5 nmol/0.2 mu l) into the lateral parabrachial nucleus also induced a slight ingestion of water (4.2 +/- 1.6 ml/240 min vs. saline: 1.1 +/- 0.3 ml/240 min) when only water was available, a long lasting (for at least 2 h) increase on mean arterial pressure (14 +/- 4 mm Hg, vs. saline: -1 +/- 1 mm Hg) and only a tendency to increase urinary volume and Na+ and K+ renal excretion. Therefore the activation of GABAA receptors in the lateral parabrachial nucleus induces strong NaCl intake, a small ingestion of water and pressor responses, without changes on food intake. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water and NaCl intake is strongly inhibited by the activation of alpha(2)-adrenergic receptors with clonidine or moxonidine (alpha(2)-adrenergic/imidazoline agonists) injected peripherally or into the forebrain and by serotonin and cholecystokinin in the lateral parabrachial nucleus (LPBN). Considering that alpha(2)-adrenergic receptors exist in the LPBN and the similar origin of serotonergic and adrenergic afferent pathways to the LPBN, in this study we investigated the effects of bilateral injections of moxonidine alone or combined with RX 821002 (alpha(2)- adrenergic antagonist) into the LPBN on 1.8% NaCl and water intake induced by the treatment with s.c. furosemide (10 mg/kg)+captopril (5 mg/kg). Additionally, we investigated if moxonidine into the LPBN would modify furosemide+captopril-induced c-fos expression in the forebrain. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were used. Contrary to forebrain injections, bilateral LPBN injections of moxonidine (0.1, 0.5 and 1 nmol/0.2 mul) strongly increased furosemide+captopril-induced 1.8% NaCl intake (16.6 +/- 2.7, 44.5 +/- 3.2 and 44.5 +/- 4.3 ml/2 h, respectively, vs. vehicle: 6.9 +/- 1.5 ml/2 h). Only the high dose of moxonidine increased water intake (23.3 +/- 3.8 ml/2 h, vs. vehicle: 12.1 +/- 2.6 ml/2 h). Prior injections of RX 821002 (10 and 20 nmol/0.2 mu1) abolished the effect of moxonidine (0.5 nmol) on 1.8% NaCl intake. Moxonidine into the LPBN did not modify furosemide+captopril-induced c-fos expression in forebrain areas related to the control of fluid-electrolyte balance. The results show that the activation of LPBN a2-adrenergic receptors enhances furosemide+captopril-induced 1.8% NaCl and water intake. This enhancement was not related to prior alteration in the activity of forebrain areas as suggested by c-fos expression. Previous and present results indicate opposite roles for alpha(2-)adrenergic receptors in the control of sodium and water intake according to their distribution in the rat brain. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies using non-specific serotonergic agonists and antagonists have shown the importance of serotonergic inhibitory mechanisms in the lateral parabrachial nucleus (LPBN) for controlling sodium and water intake. In the present study, we investigated whether the serotonergic 5-HTIA receptor subtype in the LPBN participates in this control. Male Holtzman rats had cannulas implanted bilaterally into the LPBN. Bilateral injections of the 5-HTIA receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 0.1, 1.25, and 2.5 mu g/ 0.2 mu l), into the LPBN enhanced 0.3 M NaCl and water intake of rats injected subcutaneously with the diuretic furosemide (10 mg/kg bw) and a low dose of the angiotensin-converting enzyme inhibitor, captopril (5 mg/kg bw). The increase in NaCl intake produced by 8-OH-DPAT injections was reduced in dose-related manner by pre-treating the LPBN with the selective 5-HTIA serotonergic antagonist, WAY-100635 (WAY, I and 2 mu g/0.2 mu l). In contrast, WAY did not affect water intake produced by 8-OH-DPAT. WAY-100635 injected alone into the LPBN had no effect on NaCl ingestion. Injections of 8-OH-DAPT (0.1 mu g/0.2 mu l) into the LPBN also increased 0.3 M NaCl intake induced by 24-h sodium depletion (furosemide, 20 mg/kg bw plus 24 h of sodium-free diet). Serotonin (5-HT, 20 mu g/0.2 mu l) injected alone or combined with 8-OH-DPAT into the LPBN reduced 24-h sodium depletion-induced 0.3 M NaCl intake. Therefore, the activation of serotonergic 5-HTIA receptors in the LPBN increases stimulated hypertonic NaCl and water intake, while 5-HT injections into the LPBN reduce NaCl intake and prevent the effects of serotonergic 5-HTIA receptor activation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water and 1.8% NaCl intake was recorded daily in adult male rats (N = 6) submitted to four water deprivations plus four sodium appetite tests, each at the end of each 7-day interval, or in controls (non-deprived, N = 6). Water deprivation was achieved by removing water and 1.8% NaCl for 24 h. Water was then offered for 2 h. At the end of this period, 1.8% NaCl was also offered in addition to water (sodium appetite test). Average daily 1.8% NaCl intake was enhanced from 5.2 ± 1.0 to 15.7 ± 2.5 ml from the first to the fifth week in the experimental group and was unchanged in the control group. Daily water intake was not altered in either group. Thus, repeated episodes of water deprivation enhance daily NaCl intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertonic NaCl intake is produced by serotonin receptor antagonism in the lateral parabrachial nucleus (LPBN) of dehydrated rats or in rats pretreated with a mineralocorticoid, for example deoxycorticosterone (DOCA), that receive an intracerebroventricular injection (icv) of angiotensin II (ang II). The objective of the present work was to find out whether these two mechanisms are also involved with isotonic NaCl intake. Serotonin receptor blockade by methysergide in the LPBN (4 mu g/0.2 mu l bilaterally) had no effect on 0.15 M NaCl (methysergide: 19.3 +/- 5.2 ml/60 min; vehicle: 19.3 +/- 4.2 ml/60 min; n=7) or water (methysergide: 3.4 +/- 1.4 ml/ 60 min; vehicle 2.2 +/- 0.6 ml/60 min) intake induced by systemic diuretic furosemide combined with low dose of captopril (Furo/Cap). Methysergide treatment 4 days later in the same animals produced the expected enhancement in the 0.3 M NaCl intake induced by Furo/Cap (methysergide: 16.6 +/- 3.5 ml/60 min; vehicle: 6.6 +/- 1.5 ml/60 min). Similar result was obtained when another group was tested first with 0.3 M NaCl and later with 0.15 M NaCl. Isotonic NaCl intake induced by icv ang II was however enhanced by prior DOCA treatment. A de novo hypertonic NaCl intake was produced in another group by the same combined treatment. The results suggest that a facilitatory mechanism like the mineralocorticoid/ang II synergy may enhance NaCl solution intake at different levels of tonicity, while the action of an inhibitory mechanism, like the LPBN serotonergic system, is restricted to the ingestion at hypertonic levels. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult male rats (n = 5-7 per group) were water deprived for 24 h with only food available. Then they had access to water for 2 h. At the end of the 2 h, 1.5% NaCl was offered to the animals and the intake was measured for another 2 h. The rats drank an average of 9.8 +/- 3.0 ml/120 min of 1.5% NaCl; water intake during this time was negligible (not more than 1.0 ml/120 min). Captopril injected IP at the doses of 12 and 24 mg/kg induced 60-90% inhibition of the intake. Losartan or PD123319 injected ICV induced 50-80% inhibition of the intake. Losartan (80 nmol) inhibited the intake at a lower dose than PD123319 (160 nmol). Neither losartan nor PD123319 inhibited 10% sucrose intake. The inhibition of 1.5% NaCl intake was not related to alterations in arterial pressure. The results show that the antagonism of the renin-angiotensin system inhibits the 1.5% NaCl intake induced by water deprivation. The inhibition induced by the angiotensin II antagonists suggest that this peptide is important for the control of salt intake induced by water deprivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Male adult rats that received an intragastric load of 2 ml of 12% NaCl (n = 13) ingested both water (4.0 +/- 0.2 ml/2 h) and 0.9% NaCl (3.7 +/- 1.0 ml/2 h) when compared with rats that received intragastric load of 2 ml ofwater(water: 0.1 +/- 0.1; 0.9% NaCl: 0.5 +/- 0.3 ml/2 h, n = 12) in a two-bottle test. Intragastric sodium load increased plasma sodium concentration and osmolality by 5% and reduced plasma renin activity by half compared to rats that received intragastric load of water. Intravenous infusion of 1.5 ml/10 min of 10% NaCl (n = 16) also induced ingestion of water (6.2 +/- 0.8 ml/2 h) and 0.9% NaCl (2.9 +/- 0.8 ml/2 h) compared with intravenous infusion of 1.5 ml/10 min of 0.9% NaCl (water: 0.9 +/- 0.4; 0.9% NaCl: 0.5 +/- 0.2 ml/2 h, n = 14). Therefore, a sodium load that raises natremia and plasma osmolality, and therefore induces cell dehydration, results in both 0.9% NaCl and water ingestion when the rats have a two-bottle choice. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigated: (a) the effects of intracerebroventricular (i.c.v.) injections of moxonidine (an alpha(2)-adrenergic and imidazoline receptor agonist) on the ingestion of water and NaCl induced by 24 h of water deprivation; (b) the effects of i.c.v. injection of moxonidine on central angiotensin II (ANG II)- and carbachol-induced water intake; (c) the effects of the pre-treatment with i.c.v, idazoxan (an alpha(2)-adrenergic and imidazoline receptor antagonist) and RX 821002 (a selective alpha(2)-adrenergic antagonist) on the antidipsogenic action of central moxonidine. Male Holtzman rats had stainless steel cannulas implanted in the lateral cerebral ventricle. Intracerebroventricular injection of moxonidine (5 and 20 nmol/1 mu l) reduced the ingestion of 1.5% NaCl solution (4.1 +/- 1.1 and 2.9 +/- 2.5 ml/2 h, respectively vs. control = 7.4 +/- 2.1 ml/2 h) and water intake (2.0 +/- 0.6 and 0.3 +/- 0.2 ml/h, respectively vs. control = 13.0 +/- 1.4 ml/h) induced by water deprivation, Intracerebroventricular moxonidine (5 nmol/1 mu l) also reduced i.c.v. ANG Ii-induced water intake (2.8 +/- 0.9 vs. control = 7.9 +/- 1.7 ml/1 h) and i.c.v. moxonidine (10 and 20 nmol/1 mu l) reduced i.c.v. carbachol-induced water intake (4.3 +/- 1.7 and 2.1 +/- 0.9, respectively vs. control = 9.2 +/- 1.0 ml/1 h). The pre-treatment with i.c.v. idazoxan (40 to 320 nmol/1 mu l) abolished the inhibitory effect of i.c.v, moxonidine on carbachol-induced water intake. Intracerebroventricular idazoxan (320 nmol/1 mu l) partially reduced the inhibitory effect of moxonidine on water deprivation-induced water intake and produced only a tendency to reduce the antidipsogenic effect of moxonidine on ANG Ii-induced water intake. RX 821002 (80 and 160 nmol/1 mu l) completely abolished the antidipsogenic action of moxonidine on ANG Ii-induced water intake. The results show that central injections c: moxonidine strongly inhibit water and NaCl ingestion. They also suggest the involvement of central alpha(2)-adrenergic receptors in the antidipsogenic action of moxonidine. (C) 1999 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

α2-Adrenoceptor activation with moxonidine (α2-adrenergic/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) enhances angiotensin II/hypovolaemia-induced sodium intake and drives cell dehydrated rats to ingest hypertonic sodium solution besides water. Angiotensin II and osmotic signals are suggested to stimulate meal-induced water intake. Therefore, in the present study we investigated the effects of bilateral injections of moxonidine into the LPBN on food deprivation-induced food intake and on meal-associated water and 0.3 M NaCl intake. Male Holtzman rats with cannulas implanted bilaterally into the LPBN were submitted to 14 or 24 h of food deprivation with water and 0.3 M NaCl available (n = 6-14). Bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN increased meal-associated 0.3 M NaCl intake (11.4 ± 3.0 ml/120 min versus vehicle: 2.2 ± 0.9 ml/120 min), without changing food intake (11.1 ± 1.2 g/120 min versus vehicle: 11.2 ± 0.9 g/120 min) or water intake (10.2 ± 1.5 ml/120 min versus vehicle: 10.4 ± 1.2 ml/120 min) by 24 h food deprived rats. When no food was available during the test, moxonidine (0.5 nmol) into the LPBN of 24 h food-deprived rats produced no change in 0.3 M NaCl intake (1.0 ± 0.6 ml/120 min versus vehicle: 1.8 ± 1.1 ml/120 min), nor in water intake (0.2 ± 0.1 ml/120 min versus vehicle: 0.6 ± 0.3 ml/120 min). The results suggest that signals generated during a meal, like dehydration, for example, not hunger, induce hypertonic NaCl intake when moxonidine is acting in the LPBN. Thus, activation of LPBN inhibitory mechanisms seems necessary to restrain sodium intake during a meal. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)