19 resultados para Modeling Geomorphological Processes
Resumo:
Managing the great complexity of enterprise system, due to entities numbers, decision and process varieties involved to be controlled results in a very hard task because deals with the integration of its operations and its information systems. Moreover, the enterprises find themselves in a constant changing process, reacting in a dynamic and competitive environment where their business processes are constantly altered. The transformation of business processes into models allows to analyze and redefine them. Through computing tools usage it is possible to minimize the cost and risks of an enterprise integration design. This article claims for the necessity of modeling the processes in order to define more precisely the enterprise business requirements and the adequate usage of the modeling methodologies. Following these patterns, the paper concerns the process modeling relative to the domain of demand forecasting as a practical example. The domain of demand forecasting was built based on a theoretical review. The resulting models considered as reference model are transformed into information systems and have the aim to introduce a generic solution and be start point of better practical forecasting. The proposal is to promote the adequacy of the information system to the real needs of an enterprise in order to enable it to obtain and accompany better results, minimizing design errors, time, money and effort. The enterprise processes modeling are obtained with the usage of CIMOSA language and to the support information system it was used the UML language.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
Pós-graduação em Geografia - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Parmodel is a web server for automated comparative modeling and evaluation of protein structures. The aim of this tool is to help inexperienced users to perform modeling, assessment, visualization, and optimization of protein models as well as crystallographers to evaluate structures solved experimentally. It is subdivided in four modules: Parmodel Modeling, Parmodel Assessment, Parmodel Visualization, and Parmodel Optimization. The main module is the Parmodel Modeling that allows the building of several models ford a same protein in a reduced time, through the distribution of modeling processes on a Beowulf cluster. Parmodel automates and integrates the main softwares used in comparative modeling as MODELLER, Whatcheck, Procheck, Raster3D, Molscript, and Gromacs. This web server is freely accessible at http://www.biocristalografia.df.ibilce.unesp.br/tools/parmodel. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Searching for an understanding of how the brain supports conscious processes, cognitive scientists have proposed two main classes of theory: Global Workspace and Information Integration theories. These theories seem to be complementary, but both still lack grounding in terms of brain mechanisms responsible for the production of coherent and unitary conscious states. Here we propose following James Robertson's "Astrocentric Hypothesis" - that conscious processing is based on analog computing in astrocytes. The "hardware" for these computations is calcium waves mediated by adenosine triphosphate signaling. Besides presenting our version of this hypothesis, we also review recent findings on astrocyte morphology that lend support to their functioning as Local Hubs (composed of protoplasmic astrocytes) that integrate synaptic activity, and as a Master Hub (composed, in the human brain, by a combination of interlaminar, fibrous, polarized and varicose projection astrocytes) that integrates whole-brain activity.
Astrocytes and human cognition: Modeling information integration and modulation of neuronal activity
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The design and implementation of an ERP system involves capturing the information necessary for implementing the system's structure and behavior that support enterprise management. This process should start on the enterprise modeling level and finish at the coding level, going down through different abstraction layers. For the case of Free/Open Source ERP, the lack of proper modeling methods and tools jeopardizes the advantages of source code availability. Moreover, the distributed, decentralized decision-making, and source-code driven development culture of open source communities, generally doesn't rely on methods for modeling the higher abstraction levels necessary for an ERP solution. The aim of this paper is to present a model driven development process for the open source ERP ERP5. The proposed process covers the different abstraction levels involved, taking into account well established standards and common practices, as well as new approaches, by supplying Enterprise, Requirements, Analysis, Design, and Implementation workflows. Copyright 2008 ACM.
Resumo:
In the book Conceptual Spaces: the Geometry of Thought [2000] Peter Gärdenfors proposes a new framework for cognitive science. Complementary to symbolic and subsymbolic [connectionist] descriptions, conceptual spaces are semantic structures constructed from empirical data representing the universe of mental states. We argue that Gärdenfors' modeling can be used in consciousness research to describe the phenomenal conscious world, its elements and their intrinsic relations. The conceptual space approach affords the construction of a universal state space of human consciousness, where all possible kinds of human conscious states could be mapped. Starting from this approach, we discuss the inclusion of feelings and emotions in conceptual spaces, and their relation to perceptual and cognitive states. Current debate on integration of affect/emotion and perception/cognition allows three possible descriptive alternatives: emotion resulting from basic cognition; cognition resulting from basic emotion, and both as relatively independent functions integrated by brain mechanisms. Finding a solution for this issue is an important step in any attempt of successful modeling of natural or artificial consciousness. After making a brief review of proposals in this area, we summarize the essentials of a new model of consciousness based on neuro-astroglial interactions. © 2011 World Scientific Publishing Company.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)