220 resultados para Mercury toxicity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fish bioassays are valuable tools that can be used to elucidate the toxicological potential of numerous substances that are present in the aquatic environment. In this study, we assessed the antagonistic action of selenium (Se) against the toxicity of mercury (Hg) in fish (Oreochromis niloticus). Six experimental groups with six fish each were defined as follows: (1) control, (2) mercury (HgCl2), (3) sodium selenite (Na2Se4O3), (4) sodium selenate (Na2Se6O4), (5) mercury + sodium selenite (HgCl2 + Na2Se4O3), and (6) mercury + sodium selenate (HgCl2 + Na2Se6O4). Hematological parameters [red blood cells (RBC), white blood cells (WBC), and erythroblasts (ERB)] in combination with cytogenotoxicity biomarkers [nuclear abnormalities (NAs) and micronuclei (MN)] were examined after three, seven, ten, and fourteen days. After 7 days of exposure, cytogenotoxic effects and increased erythroblasts caused by mercury, leukocytosis triggered by mercury + sodium selenite, leukopenia associated with sodium selenate, and anemia triggered by mercury + sodium selenate were observed. Positive correlations that were independent of time were observed between WBC and RBC, ERB and MN, and NA and MN. The results suggest that short-term exposure to chemical contaminants elicited changes in blood parameters and produced cytogenotoxic effects. Moreover, NAs are the primary manifestations of MN formation and should be included in a class characterized as NA only. Lastly, the staining techniques used can be applied to both hematological characterization and the measurement of cytogenotoxicity biomarkers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the Threshold Effect Level values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Guanabara Bay (GB) comprises of estuarine and marine environments of high ecological and socio-economic relevance, together with port, industrial and urban areas. The anthropogenic activities produce environmental impacts, including the aquatic pollution. The sediment quality assessment is important to evaluate the effects of contamination, once sediments are a repository for most of the contaminants. In this Study, the quality of sediments from GB was evaluated, in rainy and dry periods, throughout the employment of acute toxicity tests with the amphipod Tiburonella viscana, and chronic bioassays with embryos of the sea-urchin Lytechinus variegatus. In the dry period, acute toxicity was found in the sediments from stations 1, 2 3 (NW) and 7 (near Guapimirim Environmental Protection Area). The bioassays with liquid phases showed effects, but were strongly influenced by the unionized ammonia levels, which were high in this period. In the rainy period, acute toxicity was found in sediments samples from stations 1, 2, 3, 6, 8, 10, 11, 12 and 15. Chronic toxicity could be clearly detected, as ammonia concentrations tended to be low in the most part of the samples. The results showed that the sediment toxicity is influenced by precipitation rates, which increase the input of contaminants to the Bay, and also allowed subdividing GB in three main zones: northwest (stations 1, 2, 3, 5), northeast (stations 6, 7, 8, 9) and centre-south (stations 10, 11, 12, 13, 14, 15). Results also showed that the quality of GB sediments is poor, and that toxicity tests could determine the combined effects of pollutants.
Resumo:
A Baía de Guanabara é um ambiente marinho-estuarino de grande relevância ecológica e sócio-econômica, e sujeita a uma ampla gama de impactos ambientais. O sedimento é o principal destino para a maioria das substâncias introduzidas nos corpos d'água, podendo fornecer uma medida integrada da qualidade ambiental, a qual pode ser avaliada por várias abordagens. Neste projeto, a qualidade de sedimentos da Baía de Guanabara foi por uma abordagem ecotoxicológica, por meio de testes de toxicidade aguda de sedimento integral, utilizando Tiburonella viscana, e testes de toxicidade crônica de água intersticial, elutriato e interface sedimento-água, utilizando embriões de Lytechinus variegatus. Os sedimentos foram coletados em 14 estações de amostragem. Nos testes crônicos houve efeitos significativos na maioria das amostras, enquanto os sedimentos coletados nas estações 1, 2, 3, 6, 8, 10, 11, 12 e 15 apresentaram também toxicidade aguda. Houve grande concordância entre os resultados dos diferentes testes, e sua integração mostrou que os sedimentos analisados encontram-se inadequados à vida aquática, indicando degradação ambiental na baía da Guanabara. Nesse contexto, o controle das fontes poluidoras e o gerenciamento dos múltiplos usos da baía devem ser implementados, no sentido da melhora da qualidade ambiental.
Resumo:
The garimpo gold mining activity has released about 2.500 tons of mercury in the Brazilian Amazonian environment in the 1980-1995 period. The northern region of Mato Grosso State, an important gold mining and trading area during the Arnazonian gold rush is now at a turning point regarding its economic future. Nowadays, the activities related to gold mining have only a low relevance on its economy. Thus, the local communities are looking for economic alternatives for the development of the region. Cooperative fish farming is one of such alternatives. However, some projects are directly implemented on areas degraded by the former garimpo activity and the mercury left behind still poses risks, especially by its potential accumulation in fish. The objective of the present study was to evaluate the levels of mercury contamination in two fish farming areas, Paranaita and Alta Floresta, with and without records of past gold-washing activity, respectively. Data such as mercury concentration in fish of different trophic level, size, and weight as well as the water physical and chemical parameters were measured and considered. These preliminary data have shown no significant difference between these two fish fanning areas, relatively to mercury levels in fish. (c) 2004 Elsevier B.V. All rights reserved.
ACUTE TOXICITY of SODIUM SELENITE and SODIUM SELENATE TO TILAPIA, Oreochromis niloticus, FINGERLINGS
Resumo:
Selenium is an essential nutrient for many organisms, including fish. It can be released in the water by natural processes of dissolving rocks and minerals, and by the wastewater from industries and agricultural activities, which can increase its concentration in the environment, leading to toxic effects to the aquatic biota. Median Lethal Concentrations (LC(50-96h)) of two forms of selenium were estimated to fingerlings of Nile tilapia Oreochromis niloticus, focusing on estimating indicators for future environmental risk assessments in aquatic ecosystems contaminated with those elements, particularly for evaluate sources of water quality suitable for rearing tilapia. The results were: LC(50-96h) of sodium selenite (Na(2)SeO(3)) = 4.42 mg Se(4+) L(-1), and LC(50-96h) of sodium selenate (Na(2)SeO(4)) = 14,67 mg Se(6+) L(-1). According to those data, it was possible to classify sodium selenite as highly toxic and sodium selenate as moderately toxic to fingerlings of tilapia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)