122 resultados para Macrobrachium Rosenbergii
Resumo:
This work investigates the acceptance of different food types and sizes by Macrobrachium rosenbergii during each larval stage. Food intake of dry and wet formulated diets of four different size classes (250-425, 425-710, 710-1000 and 1000-1190 mum), as well as Artemia nauplii, was determined. Larvae of each zoeal stage were stocked in beakers and fed ad libitum. After 30-45 min, the digestive tract of each larva was observed under a stereomicroscope. Acceptance was evaluated by food intake frequency (FFI). There was no significant interaction (P<0.05) between inert diet size and FFI for each larval stage. Therefore, food intake during larval development is independent of food particle size. The ingestion of Artemia nauplii, was significantly higher by larvae between stages II and VI. Between stages VII and XI, FFI for Artemia nauplii and wet diet was similar, while the FFI of the dry diet was similar to live food between stages IX and XI. The wet diet was ingested by more than 50% of the larvae only from stage VII onwards, while the dry diet from stage VIII onwards. These results indicate that larvae could be fed Artemia nauplii only until stage VI. Diet supplementation should start from stage VII onwards, using food particles varying from 250 to 1190 mum. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The functional response between ingestion rate and food concentration was determined for each larval stage of Macrobrachium rosenbergii. Artemia franciscana nauplii were supplied at 2,4, 6, 8, 10 and 12 per milliliter. The nauplii were counted by sight using a Pasteur pipette and transferred to Petri dishes containing 40 ml of brackish water (12 parts per thousand) lying on the top of black plastic. One larva at each stage was individually placed into each Petri dish containing different food density. After 24 h, each larva was removed from the Petri dish and the leftover nauplii were counted. The amount consumed was determined by the difference between the initial and final number of nauplii. Ingestion rate (I) increased as food density (P) increased and was defined by the model I=I-m(1-e(-kP)). The results suggest four levels of ingestion during larval development. The first level includes stages II, III and IV, with average maximum consumption of about 40 nauplii/day; the second level includes stages V and VI, with consumption of approximately 55 nauplii/day; the third level includes stages VII and VIII, with consumption of 80-100 nauplii/day. The fourth level includes stages IX, X and XI, in which the high values for maximum ingestion (Im) exceed the load capacity of the medium. The low values for constant k (that may correspond to the adaptability of the food to prey characteristics, such as, size, mobility, etc.) obtained for stages IX, X and XI indicated that Artemia is not an adequate prey and there is necessity of a supplementary diet. The best relationship between predator and prey seemed to occur during stage IV Results obtained in the present work may subsidize future researches and serve as a guideline for practical considerations of feeding rates. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A recirculating system and a matching management schedule for small-scale freshwater prawn larviculture were described. The system comprised a 140 L larval culture tank in line with a 43 L biofilter filled with 24 L of calcareous substrate. Both the tank and biofilter were made of black colored fiberglass in a conical-cylindrical shape. The turnover rate of the water through the system was 24 times a day; water was pumped by airlift. Results of ten larvicultures showed that the system maintained temperature, dissolved oxygen, pH, salinity, ammonium and nitrite stable and suitable to Macrobrachium rosenbergii larvae. Survival and productivity varied from 60.5 to 72.4% and 37 to 72 post-larvae/L, respectively; both were compatible with results of commercial hatcheries. Therefore, this system may be very useful for research purposes or adapted for small-scale post-larvae production.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study analyze the consequences of unilateral and bilateral ablation based on ovigerous percentage, consecutive spawns, and secondary effects of the surgical process in the females of Macrobrachium rosenbergii (De Man, 1879). Two experiments were carried out with four and seven months old females in intermolt stage. Each experiment was comprised of control, unilateral and bilateral ablation. Eyestalk ablation was done with a bistoury with a topic hot cauterization followed by application of antibiotic pomades. The animals were maintained at constant temperature (28 ± 1,05ºC) and photoperiod of 12L: 12D within fibercement boxes with sandy bottom and biological filter. Females were observed once a day during fourteen weeks, registering gonadal condition, ecdysis and presence of spermatophore (mating) and spawning. Unilateral ablation technique is more efficient due to the anticipation of the first spawn, repeatability between spawns, expressive rate of ovigerous females and survival, that favored its applicability. Bilateral eyestalk ablation produced the mortality of ali the females with change in coloration and food activity patterns. These results corroborate other observations on penaeid shrimps. though bilateral ablation on some lobsters was a success. These results showing an interespecific variation and can be used in aquaculture projects.
Resumo:
The effects of ambient nitrite concentrations on larval development of giant river prawn Macrobrachium rosenbergii were evaluated. The trials were conducted in two phases: phase 1, larvae from stages I through VIII and phase 2, larvae from stage VIII until post-larvae. In both phases larvae were kept in water with nitrite (NO2-N) concentrations of 0, 2, 4, 8 and 16 mg/L. Oxygen consumption was analyzed for larvae in stage II at nitrite concentrations of 0, 4, and 8 mg/L. Survival, weight gain, larval stage index and metamorphosis rate decreased linearly with increasing ambient nitrite concentration. However, there was no significant difference between larvae subjected to 0 and 2 mg/L NO2-N. In phase 1, there was total mortality at 16 mg/L NO2-N, while in phase 2 larval development stopped at stage X in this treatment. The oxygen consumption in stage II increased significantly at NO2-N concentration from 0 to 4 mg/L, but there was no difference between 4 and 8 mg/L NO2-N. In conclusion, increasing ambient nitrite up to 16 mg/L NO2-N delays larval development, reduces larval growth rate and causes mortality, whereas no significant effect occurs for levels below 2 mg/L NO2-N. However, the establishment of a general safe level of nitrite to M rosenbergii hatchery may be difficult due to the great variability in larvae individual sensitivity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Our objective was to evaluate the impacts caused on pond water quality by maintenance of Macrobrachium rosenbergii broodstock. During eight weeks we determined pH, dissolved oxygen (DO), conductivity, turbidity, particulate suspended material (PSM), nitrogen (N) and phosphorus (P), all in inlet and effluent water. All variables presented higher values in the effluent, except OD. N-ammoniacal concentration (0.013 mg L(-1)) was 2.7 times higher in the effluent pond; NO(2)-N (0.019 mg L(-1)), 2.3; NO(3)-N (0.139 mu g L(-1)), 1.8; PO(4)-P (0.065 mg L(-1)), 7.2; and DP (0,104 mg L(-1)), 4.9 times higher. For TKN (0.67 mg L(-1)) and TP (0.235 mg L(-1)) the values in the pond effluent represent an increase of 0.27 mg L(-1) and 0.175 mg L(-1), respectively. The maintenance of M. rosenbergii broodstock increase the nutrient concentrations, mainly TP, prevent effluent pond released into receiving water bodies on 1, 2 and 3 classes of the CONAMA N degrees 357 Resolution.
Resumo:
In this article the length growth curves of Macrobrachium rosenbergii (De Man, 1879) held in different population densities were analysed. Postlarvae prawns were stocked into five 0,02 ha earthen ponds at densities of 4, 8, 12, 16 and 20 ind./m² during six months. Forthnightly, the mean total length of animals from each pond were obtained by means of random samples. For each population the length growth curves and the instantaneous growth rate expressions were determined. The growth rate and the asymptotic maximum length decreased with the stocking density raised. This effect is greater when the density ranges in low levels. The growth decrease can be due to intraspecific competition for life resources and to negative interactions between individuals, as aggressive or social behavior, that increase with the increase prawns density.
Resumo:
Four 0.02-ha earthen ponds at the UNESP Aquaculture Center, Jaboticabal, São Paulo, Brazil, were stocked with newly metamorphosed Macrobrachium rosenbergii post-larvae at 1.5 animals/m2. After 8 mo, prawn density at harvest ranged from 0.3/ m2 to 0.8/m2. Growth curves were determined for each population using von Bertalanffy growth functions. Asymptotic maximum length and asymptotic maximum weight increased as final population size decreased indicating that a strong density effect on prawn growth occurs in semi-intensive culture, even when populational density varies within a small range of less than 1 animal/m2.
Resumo:
Differences in culture duration, metamorphosis rate and the productivity in hatchery culture of M. rosenbergii using a closed system with natural and artificial brackish water were evaluated. Reuse of brackish water in more than one hatchery cycle was also evaluated. Natural and artificial brackish water constituted the two tested treatments, which were distributed in four independent recirculating systems (tank and respective biofilter). Four batches of cultures were conducted and the 2nd and 4th reused the water from the 1st and 3rd, respectively. Mean duration of the hatchery period was 28 d in natural brackish water and 31 d in artificial brackish water. The metamorphosis rate and the average productivity for the natural brackish water treatment were 74% and 60 postlarvae/ L. respectively, and values obtained with artificial brackish water were 55% and 44 postlarvae/L. The successful hatchery culture of M. rosenbergii in this specific artificial brackish water suggests its potential use in enterprises located far from the coast. Brackish water can be used in two consecutive cultures without a negative effect on productivity.
Resumo:
The effect of stocking prawns Macrobrachium rosenbergii at increasing densities in ponds with Nile tilapia Oreochromis niloticus reared at low density was evaluated. Twelve 0.01-ha earthen ponds were stocked with 1 tilapia/m2 and 0, 2, 4, or 6 post-larvae prawn/m2. Three replicates were randomly assigned to each prawn density. Postlarval prawns were stocked a week prior to tilapia juveniles and both were harvested 175 d after the beginning of the experiment. Tilapia final average weight, survival, production, and food conversion rates did not differ significantly among treatments (P > 0.05); the averages were 531 g. 67%, 3,673 kg/ha, and 1.91, respectively. Prawn survival rates did not differ for the three stocking densities (mean 90%). However, final weight and production were significantly different (P < 0.05) as follows: 34.0, 23.0, and 14.7 g and 639, 909, and 818 kg/ha, respectively for 2, 4, and 6 prawns/m2 densities. Stocking densities up to 6 prawn/m2 did not affect tilapia production and required neither additional feeding nor significant changes in management. The polyculture system allowed an increase in total production with the same amount of supplied feed, thus improving the system sustainability.
Resumo:
The effect of nitrate concentration on giant river prawn, Macrobrachium rosenbergii, larvae was investigated. Survival rate, weight gain, and larval development were evaluated for different concentrations of nitrate in three experiments. The experiments were divided i n to two phases. In the first phase, larvae from stages I through VIII were analysed, while in the second phase larvae from stage VIII through post-larvae metamorphosis were analysed. Oxygen consumption was also determined for zoea I, II, and VIII exposed to 0, 700, and 1,000 mg/L of nitrate-N. No effect was observed for concentrations up to 180 mg/L NO3-N (experiments I and II), and nitrate levels as 1,000 mg/L NO3-N did not affect survival in the first phase of the third experiment. On the other hand, larval stage index (LSI) and weight gain decreased as nitrate-N concentration increased from 0 to 1,000 mg/L. In the second phase, survival and metamorphosis rate decreased as nitrate concentration increased, according to a linear model. The effect of nitrate levels on weight gain followed a curvilinear pattern. Larval respiration decreased in the water where nitrate was added, but only during stage II. The results demonstrated that nitrate presents extremely low toxicity for giant river prawn larvae, and data were related to the levels of nitrate that usually occur in larviculture systems also discussed. Therefore, nitrate is not a limiting factor for giant river prawn larviculture. © 2003 by The Haworth Press, Inc. All rights reserved.