71 resultados para Lie Algebras With Polynomial Identities
Resumo:
In the pattern recognition research field, Support Vector Machines (SVM) have been an effectiveness tool for classification purposes, being successively employed in many applications. The SVM input data is transformed into a high dimensional space using some kernel functions where linear separation is more likely. However, there are some computational drawbacks associated to SVM. One of them is the computational burden required to find out the more adequate parameters for the kernel mapping considering each non-linearly separable input data space, which reflects the performance of SVM. This paper introduces the Polynomial Powers of Sigmoid for SVM kernel mapping, and it shows their advantages over well-known kernel functions using real and synthetic datasets.
Resumo:
lsoscalar (T = 0) plus isovector (T = 1) pairing Hamiltonian in LS-coupling. which is important for heavy N = Z nuclei, is solvable in terms of a SO(8) Lie algebra for three special values of the mixing parameter that measures the competition between the T = 0 aid T = 1 pairing. The SO(8) algebra is generated, amongst others, by the S = 1, T = 0 and S = 0, T = 1 pair creation and annihilation operators and corresponding to the three values of the mixing parameter, there are three chains of subalgebras: SO(8) superset of SOST (6) superset of SOS(3) circle times SOT(3), SO(8) superset of [SOS(5) superset of SOS(3)] circle times SOT(3) and SO(8) superset of [SOT(5) superset of SOT(3)] circle times SOS(3). Shell model Lie algebras, with only particle number conserving generators, that are complementary to these three chains of subalgebras are identified and they are used in the classification of states for a given number of nucleons. The classification problem is solved explicitly tor states with SO(8) seniority nu = 0, 1, 2, 3 and 4. Using them, hand structures in isospin space are identified for states with nu = 0, 1, 2 and 3. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
There is a remarkable connection between the number of quantum states of conformal theories and the sequence of dimensions of Lie algebras. In this paper, we explore this connection by computing the asymptotic expansion of the elliptic genus and the microscopic entropy of black holes associated with (supersymmetric) sigma models. The new features of these results are the appearance of correct prefactors in the state density expansion and in the coefficient of the logarithmic correction to the entropy.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
We derive the current algebra of supersymmetric principal chiral models with a Wess-Zumino term. At the critical point one obtains two commuting super-affine Lie algebras as expected, but, in general, them are intertwining fields connecting both right and left sectors, analogously to the bosonic case. Moreover, in the present supersymmetric extension we have a quadratic algebra, rather than an affine Lie algebra, due to the mixing between bosonic and fermionic fields; the purely fermionic sector displays an affine Lie algebra as well.
Resumo:
A systematic construction of super W algebras in terms of the WZNW model based on a super Lie algebra is presented. These are shown to be the symmetry structure of the super Toda models, which can be obtained from the WZNW theory by Hamiltonian reduction. A classification, according to the conformal spin defined by an improved energy momentum tensor, is discussed in general terms for all super Lie algebras whose simple roots are fermionic. A detailed discussion employing the Dirac bracket structure and an explicit construction of W algebras for the cases of OSP(1, 2), OSP(2, 2), OSP(3, 2) and D(2, 1\ alpha) are given. The N = 1 and N = 2 superconformal algebras are discussed in the pertinent cases.
Resumo:
We characterize the hermitian levels of quaternion and octonion algebras and of an 8-dimensional algebra D over the ground field F, constructed using a weak version of the Cayley-Dickson double process. It is shown that all values of the hermitian levels of quaternion algebras with the hat-involution also occur as hermitian levels of D. We give some limits to the levels of the algebra D over some ground field. © Soc. Paran. de Mat.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The construction of Lie algebras in terms of Jordan algebra generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. © 1988.