234 resultados para LPS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Horses are very sensitive to Gram-negative bacterial lipopolysaccharides (LPS) which, when introduced into the blood stream, induce several responses mediated by endogenous pro-inflammatory mediators originating from bacteriolysis or granulocyte disintegration. Intraperitoneal LPS injection was used to mimic the proposed route of endotoxin travel in clinical cases. The clinical signs and laboratory findings demonstrated a dose- dependent effect and were more consistently observed with 500 ng/kg of LPS. We conclude that intraperitoneal injection of LPS produces the same endotoxic status as obtained by systemic injection of LPS, even during the initial phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with periodontal disease have increased risk of tooth loss, particularly in cases with associated loss of alveolar bone and periodontal ligament (PDL). Current treatments do not predictably regenerate damaged PDL. Collagen I is the primary component of bone and PDL extracellular matrix. SPARC/Osteonectin (SP/ON) is implicated in the regulation of collagen content in healthy PDL. In this study, periodontal disease was induced by injections of lipopolysaccharide (LPS) from Aggregatibacter actinomycetemcomitans in wild-type (WT) and SP/ON-null C57/B16 mice. A 20-mu g quantity of LPS was injected between the first and second molars 3 times a week for 4 weeks, whereas PBS control was injected into the contralateral maxilla. LPS injection resulted in a significant decrease in bone volume fraction in both genotypes; however, significantly greater bone loss was detected in SP/ON-null maxilla. SP/ON-null PDL exhibited more extensive degradation of connective tissue in the gingival tissues. Although total cell numbers in the PDL of SP/ON-null were not different from those in WT, the inflammatory infiltrate was reduced in SP/ON-null PDL. Histology of collagen fibers revealed marked reductions in collagen volume fraction and in thick collagen volume fraction in the PDL of SP/ON-null mice. SP/ON protects collagen content in PDL and in alveolar bone in experimental periodontal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To evaluate the effect of biomechanical preparation with different irrigating solutions and calcium hydroxide dressing in dog root canals containing bacterial endotoxin (lipopolysaccharides; LPS).Methodology One hundred and forty premolar roots from seven dogs were filled with Escherichia coli LPS for 10 days (three roots were lost during histological processing). The following irrigating solutions were used for biomechanical preparation: 1% (group I, n = 20), 2.5% (group II, n = 19) and 5% sodium hypochlorite (group III, n = 19), 2% chlorhexidine digluconate (group IV, n = 20) and physiological saline solution (group V, n = 19). In group VI (n = 20), the LPS solution was maintained in the root canal during the entire experiment and in group VII (n = 20), after biomechanical preparation with saline solution, the root canals were filled with a calcium hydroxide dressing (Calen; control). After 60 days, the animals were sacrificed and the following parameters of periapical disease were evaluated: (a) inflammatory infiltrate, (b) periodontal ligament thickness, (c) cementum resorption and (d) bone resorption. Scores were given and data were analysed statistically with the Kruskal-Wallis and Dunn tests (P < 0.05).Results Histopathological evaluation showed that groups I-VI had more inflammatory infiltrate, greater periodontal ligament thickening and greater cementum and bone resorption (P < 0.05) compared to group VII, which received the calcium hydroxide intracanal dressing.Conclusions Biomechanical preparation with the irrigating solutions did not inactivate the effects of the endotoxin but the calcium hydroxide intracanal dressing did appear to inactivate the effects induced by the endotoxin in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metal loprotease-13 (MMP-13) is induced by pro-inflammatory cytokines and increased expression is associated with a number of pathological conditions such as tumor metastasis, osteoarthritis, rheumatoid arthritis and periodontal diseases. MMP-13 gene regulation and the signal transduction pathways activated in response to bacterial LPS are largely unknown. In these studies, the role of the mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-13 induced by lipopolysaccharide was investigated. Lipopolysaccharide from Escherichia coli and Actinobacillus actinomycetemcomitans significantly (P < 0.05) increased MMP-13 steady-state mRNA (average of 27% and 46% increase, respectively) in murine periodontal ligament fibroblasts. MMP-13 mRNA induction was significantly reduced by inhibition of p38 MAP kinase. Immunoblot analysis indicated that p38 signaling was required for LPS-induced MMP-13 expression. Lipopolysaccharide induced proximal promoter reporter (-660/+32 mMMP-13) gene activity required p38 signaling. Collectively, these results indicate that lipopolysaccharide-induced murine MMP-13 is regulated by p38 signaling through a transcriptional mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The role of epigenetic regulation in inflammatory diseases such as periodontitis is poorly known. The aim of this study was to assess whether Porphyromonas gingivalis lipopolysaccharide (LPS) can modulate gene expression levels of the some enzymes that promote epigenetic events in cultures of the human keratinocytes and gingival fibroblasts. In addition, the same enzymes were evaluated in gingival samples from healthy and periodontitis-affected individuals. Materials and methods: Primary gingival fibroblast and keratinocyte (HaCaT) cultures were treated with medium containing P. gingivalis LPS or P. gingivalis LPS vehicle for 24 h. After this period, cell viability was assessed by MTT test and total RNA extracted to evaluate gene expression levels of the following enzymes by qRT-PCR: DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3a (DNMT3a), histone demethylases Jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX). To evaluate gene expression in healthy and periodontitis-affected individuals, total RNA was extracted from biopsies of gingival tissue from healthy and periodontitis sites, and gene expression of DNMT1, DNAMT3a, JMJD3, and UTX was evaluated by qRT-PCR. Results: No significant differences were found in the gene expression analysis between healthy and periodontitis-affected gingival samples. The results showed that LPS downregulated DNMT1 (p < 0. 05), DNMT3a (p < 0. 05), and JMJD3 (p < 0. 01) gene expression in HaCaT cells, but no modulation was observed in gingival fibroblasts. Conclusion: P. gingivalis LPS exposure to human HaCaT keratinocytes downregulates gene expression of the enzymes that promote epigenetic events. Clinical relevance: The advance knowledge about epigenetic modifications caused by periodontopathogens may to possibly led to the development of new periodontal therapies. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 - 10 pg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and methods The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Results Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SOCS3 is an inducible endogenous negative regulator of JAK/STAT pathway, which is relevant in inflammatory conditions. We used a model of LPS-induced periodontal disease in rats to correlate SOCS3 expression with the inflammatory status. In vitro we used a murine macrophage cell line to assess the physical interaction between SOCS3 and STAT3 by coimmunoprecipitation. 30 ug of LPS from Escherichia coli were injected in the gingival tissues on the palatal aspect of first molars of the animals 3x/week for up to 4 weeks. Control animals were injected with the vehicle (PBS). The rats were sacrificed at 7, 15, and 30 days. Inflammation and gene expression were assessed by stereometric analysis, immunohistochemistry, RT-qPCR, and western blot. LPS injections increased inflammation, paralleled by an upregulation of SOCS3, of the proinflammatory cytokines IL-1β, IL-6, and TNF-and increased phosphorylation of STAT3 and p38 MAPK. SOCS3 expression accompanied the severity of inflammation and the expression of proinflammatory cytokines, as well as the activation status of STAT3 and p38 MAPK. LPS stimulation in a macrophage cell line in vitro induced transient STAT3 activation, which was inversely correlated with a dynamic physical interaction with SOCS3, suggesting that this may be a mechanism for SOCS3 regulatory function. © 2013 João Antônio Chaves de Souza et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)