18 resultados para Insulating silica capillary tubes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a numerical model to simulate refrigerant flow through capillary tubes, commonly used as expansion devices in refrigeration systems. The flow is divided in a single-phase region, where the refrigerant is in the subcooled liquid state, and a region of two-phase flow. The capillary tube is considered straight and horizontal. The flow is taken as one-dimensional and adiabatic. Steady-state condition is also assumed and the metastable flow phenomena are neglected. The two-fluid model, considering the hydrodynamic and thermal non-equilibrium between the liquid and vapor phases, is applied to the two-phase flow region. Comparisons are made with experimental measurements of the mass flow rate and pressure distribution along two capillary tubes working with refrigerant R-134a in different operating conditions. The results indicate that the present model provides a better estimation than the commonly employed homogeneous model. Some computational results referring to the quality, void fraction, velocities, and temperatures of each phase are presented and discussed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Here we present two-phase flow nonlinear parameter estimation for HFC's flow through capillary tube-suction line heat exchangers, commonly used as expansion devices in small refrigeration systems. The simplifying assumptions adopted are: steady state, pure refrigerant, one-dimensional flow, negligible axial heat conduction in the fluid, capillary tube and suction line walls. Additionally, it is considered that the refrigerant is free from oil and both phases are assumed to be at the same pressure, that is, surface tension effects are neglected. Metastable flow effects are also disregarded, and the vapor is assumed to be saturated at the local pressure. The so-called homogeneous model, involving three, first order, ordinary differential equations is applied to analyze the two-phase flow region. Comparison is done with experimental measurements of the mass flow rate and temperature distribution along capillary tubes working with refrigerant HFC-134a in different operating conditions.
Resumo:
The use of chemical preservative compounds is common in the food products industry. Caramel color is the most usual additive used in beverages, desserts, and breads worldwide. During its fabrication process, 2- and 4-methylimidazole (MeI), highly carcinogenic compounds, are generated. In these cases, the development of reliable analytical methods for the monitoring of undesirable compounds is necessary. The primary procedure for the analysis of 2- and 4-MeI is using LC- or GC-MS techniques. These procedures are time-consuming and require large amounts of organic solvents and several pretreatment steps. This prevents the routine use of this procedure. This paper describes a rapid, efficient, and simple method using capillary electrophoresis (CE) for the separation and determination of 2- and 4-MeI in caramel colors. The analyses were performed using a 75 μm i.d. uncoated fused-silica capillary with an effective length of 40 cm and a running electrolyte consisting of 160 mmol L-1 phosphate plus 30% acetonitrile. The pH was adjusted to 2.5 with triethylamine. The analytes were separated within 6 min at a voltage of 20 kV. Method validation revealed good repeatability of both migration time (<0.8% RSD) and peak area (<2% RSD). Analytical curves for 2- and 4-MeI were linear in the 0.4-40 mg L-1 concentration interval. Detection limits were 0.16 mg L-1 for 4-MeI and 0.22 mg L-1 for 2-MeI. The extraction recoveries were satisfactory. The developed method showed many advantages when compared to the previously used method. © 2013 American Chemical Society.
Resumo:
O objetivo do presente estudo foi reportar a infecção por Trypanosoma sp. em tuviras (Gymnotus aff. inaequilabiatus) oriundas do Pantanal Sul-mato-grossense, Brasil. Dez peixes provenientes do rio Paraguai, Pantanal Sul-mato-grossense, foram avaliados quanto à presença de hemoflagelados. Tripomastigotas de Trypanosoma sp. foram observados nas extensões sanguíneas de três peixes (30% de prevalência), e algumas formas encontravam-se em divisão. Por meio do exame a fresco e da centrifugação do sangue em capilar de hematócrito como métodos para diagnóstico, a taxa de prevalência foi de 80%. Esse é o primeiro relato de Trypanosoma sp. em tuviras no Brasil.
Resumo:
This work presents a numerical model to simulate refrigerant flow through capillary tubes, commonly used as expansion devices in refrigeration systems. The capillary tube is considered straight and horizontal. The flow is taken as one-dimensional and adiabatic. Steady state and thermodynamic equilibrium conditions are assumed. The two-fluid model, involving four conservation equations and considering the hidrodynamic nonequilibrium between the liquid and vapor phases is applied to the flow region. The pressure profiles and the mass flow rates given by the model are compared with experimental data.
Resumo:
This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.
Resumo:
The current technological development made by the absorption refrigeration system is an economic and ambient alternative in comparison to the vapor cycle, possessing an advantage that uses thermal energy that is less noble. Chillers of absorption are used widely in the air conditioned industries, because they can be set in motion through hot water vapors that burn natural gas, solar energy, biomasses amongst others instead of electricity. These systems allow it to reduce the tips of electric demand and balance the rocking of energy demand. This work has had a main objective to simulate a absorption refrigeration cycle with lithium-water bromide solution using biogas of sanitary landfill, and mixtures of this with natural gas. These results shown to the energy viability of the system burning biogas and its mixtures with natural gas in the generator, when compared with equipments that uses traditional fuels (natural gas, oil diesel, amongst others), for operation the commercial chillers with 15 kW of the refrigeration capacity and temperature of the water in the entrance of 14°C and the exit of 7°C.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: The use of Er:YAG laser operating in the 3 μm range with adjustable power and pulses has become popular for dental and medical practice due to its high photoablative capacity, surgical precision and antimicrobial action. Background data: The existing fiberoptic tips irradiate lasers parallel to the long axes of the tooth limiting its efficiency in the root canal. Methods: We evaluated hollow fiberoptic tips obtained from silicate glass as a means of Er:YAG laser conduction in dental procedures. The fiber tips were molded from capillary tubes with different profiles so that their ends would have cylindric, conical or spherical shapes. The performance of the three fibers as a means of propagation of Er:YAG (λ = 2.94 μm) laser radiation was compared to that of a solid sapphire fiber at 10 Hz and 200 mJ and of 20 Hz and 500 mJ. The profiles of frontal and lateral burning were visualized on thermal paper. Results: Analysis of these profiles demonstrated that the sapphire tip and the hollow fiber of cylindric section did not differ significantly in the profiles of frontal burning, and no lateral burning was detected. The fibers of the conical and spherical sections, although presenting attenuation in the frontal output power, showed a larger burning area in the frontal profile, in addition to producing lateral burning. Conclusions: The results indicate that commercial hollow fiberoptics have advantages such as easy manufacture of the different tip shapes, great adaptability, low cost, and a low loss of transmission. © Mary Ann Liebert, Inc.