199 resultados para Inelastic spin excitations


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an integrable spin-ladder model, which possesses a free parameter besides the rung coupling J. Wang's system based on the SU(4) symmetry can be obtained as a special case. The model is exactly solvable by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that the model is a special case of a more general Hamiltonian with three free parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Elastic and inelastic positron-helium scattering have been investigated in different partial waves at medium energies using the close-coupling approximation with realistic wavefunctions employing the following states: He(1s1s), He(1s2s), He(1s2p), He(1s3s), He(1s3p), Ps(1s), Ps(2s) and Ps(2p). All excitations of the helium atom are in the spin-singlet electronic state. Calculations are reported of cross sections to He(1s1s), He(1s2s), and He(1s2p) transitions for incident positron energies up to 200 eV. These cross sections are in good agreement with experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We comment on the recent results [Phys. Rev. B 70, 235314 (2004)] showing the dispersion relations of single-particle and collective excitations in quantum wires in the presence of the Rashba spin-orbit interaction (SOI). We claim that those calculations performed in the absence of SOI, and used as a strong reference to the interacting case, are unlikely to be correct. We show the correct omega-q plane of the system in the absence of Rashba SOI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scattering of positronium (Ps) by a helium atom has been investigated in a three-Ps-state coupled-channel model including Ps(1s,2s,2p) states using a recently proposed time-reversal-symmetric regularized electron-exchange model potential. Specifically, we report results of differential cross sections for elastic scattering and target-elastic Ps excitations. We also present results for total and different partial cross sections and compare them with experiment and other calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex dynamic Young's modulus of ceramic Nd2-xCexCuO4 with x = 0, 0.05 and 0.20 has been measured from 1.5 to 100 K at frequencies of 1 - 10 kHz. In the undoped sample the modulus starts decreasing below similar to 20 K, instead of approaching a constant value as in a normal solid. The modulus minimum has been interpreted in terms of paraelastic contribution from the relaxation of the Nd3+ 4f electrons between the levels of the ground state doublet, which is split by the interaction with the antiferromagnetically ordered Cu sublattice. The value of the splitting is found to be 0.34 meV, in excellent agreement with inelastic neutron scattering, infrared and specific heat experiments. With doping, the anomaly shifts to lower temperature and decreases in amplitude, consistently with a reduction of the local field from the Cu sublattice. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A time reversal symmetric regularized electron exchange model was used to elastic scattering, target elastic Ps excitations and target inelastic excitation of hydrogen in a five state coupled model. A singlet Ps-H-S-wave resonance at 4.01 eV of width 0.15 eV and a P-wave resonance at 5.08 eV of width 0.004 eV were obtained using this model. The effect on the convergence of the coupled-channel scheme due to the inclusion of the excited Ps and H states was also analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate the sequential initialization, optical control, and readout of a single spin trapped in a semiconductor quantum dot. Hole spin preparation is achieved through ionization of a resonantly excited electron-hole pair. Optical control is observed as a coherent Rabi rotation between the hole and charged-exciton states, which is conditional on the initial hole spin state. The spin-selective creation of the charged exciton provides a photocurrent readout of the hole spin state.