79 resultados para Immunoreactive Neurons
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Recent reports have suggested that orexins, also known as hypocretins, play an important role in the modulation of respiratory control in mammals, but there are no data available describing the role of the orexinergic system in the peripheral and central chemoreception of non-mammalian vertebrates. Therefore, the present study was designed to examine the localization of orexin-immunoreactive neurons in the brain of toads (Rhinella schneideri) and to investigate the contribution of orexin receptor-1 (OX1R) to the hypoxic and hypercarbic ventilatory responses of these animals during light and dark phases. Our results demonstrated that the orexinergic neurons of R. schneideri are located in the suprachiasmatic nucleus of the diencephalon. Additionally, the intracerebroventricular injection of SB-334867 (OX1R selective antagonist) attenuated the ventilatory response to hypercarbia during the dark phase by acting on tidal volume and breathing frequency, while during the light phase, SB-334867 attenuated the ventilatory response to hypoxia by acting on tidal volume only. We conclude that in the toad R. schneideri, orexinergic neurons are located in the suprachiasmatic nucleus and that OX1R contributes to hypercarbic and hypoxic chemoreflexes.
Resumo:
Previous studies demonstrated the inhibitory participation of serotonergic ( 5-HT) and oxytocinergic (OT) neurons on sodium appetite induced by peritoneal dialysis (PD) in rats. The activity of 5-HT neurons increases after PD- induced 2% NaCl intake and decreases after sodium depletion; however, the activity of the OT neurons appears only after PD-induced 2% NaCl intake. To discriminate whether the differential activations of the 5-HT and OT neurons in this model are a consequence of the sodium satiation process or are the result of stimulation caused by the entry to the body of a hypertonic sodium solution during sodium access, we analyzed the number of Fos-5-HT- and Fos-OT-immunoreactive neurons in the dorsal raphe nucleus and the paraventricular nucleus of the hypothalamus-supraoptic nucleus, respectively, after isotonic vs. hypertonic NaCl intake induced by PD. We also studied the OT plasma levels after PD- induced isotonic or hypertonic NaCl intake. Sodium intake induced by PD significantly increased the number of Fos-5- HT cells, independently of the concentration of NaCl consumed. In contrast, the number of Fos-OT neurons increased after hypertonic NaCl intake, in both depleted and nondepleted animals. The OT plasma levels significantly increased only in the PD- induced 2% NaCl intake group in relation to others, showing a synergic effect of both factors. In summary, 5-HT neurons were activated after body sodium status was reestablished, suggesting that this system is activated under conditions of satiety. In terms of the OT system, both OT neural activity and OT plasma levels were increased by the entry of hypertonic NaCl solution during sodium consumption, suggesting that this system is involved in the processing of hyperosmotic signals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In birds, neurons of the isthmo-optic nucleus (ION), as well as ''ectopic'' neurons, send axons to the retina, where they synapse on cells in the inner nuclear layer (INL). Previous work has shown that centrifugal axons can be divided into two anatomically distinct types depending on their mode of termination: either ''convergent'' or ''divergent'' (Ramon y Cajal, 1889; Maturana and Frenk, 1965). We show that cytochrome-oxidase histochemistry specifically labels ''convergent'' centrifugal axons and target neurons which appear to be amacrine cells, as well as three ''types'' of ganglion cells: two types found in the INL (displaced ganglion cells) and one in the ganglion cell layer. Labeled target amacrine cells have distinct darkly labeled ''nests'' of boutons enveloping the somas, are associated with labeled centrifugal fibers, and are confined to central retina. Lesions of the isthmo-optic tract abolish the cytochrome-oxidase labeling in the centrifugal axons and in the target amacrine cells but not in the ganglion cells. Cytochromeoxidase-labeled ganglion cells in the INL are large; one type is oval and similar to the classical displaced ganglion cells of Dogiel, which have been reported to receive centrifugal input; the other type is rounder. Rhodamine beads injected into the accessory optic system results in retrograde label in both types of cells, showing that two distinct types of displaced ganglion cells project to the accessory optic system in chickens. The ganglion cells in the ganglion cell layer that label for cytochrome oxidase also project to the accessory optic system. These have proximal dendrites that ramify in the outer inner plexiform layer. Neither the target amacrine cells nor either of the displaced ganglion cells are immunoreactive for the inhibitory transmitter gamma aminobutyric acid. At least some of the target amacrine cells may, however, be cholinoceptive: we found that the antibody to the alpha-7 subunit of the nicotinic ACh receptor labels a population of cells in the INL that are similar in location, size, and the presence of labeled bouton-like structures to those we find labeled with cytochrome oxidase. This antibody also labels neurons in the ION proper but not ectopic cells. In conclusion, it appears that cytochrome oxidase may be a marker for ''convergent'' centrifugal axons and at least one of their target cells in the INL.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rationale: A wealth of evidence supports the involvement of the serotonergic neurons of the median raphe nucleus (MRN) in anxiety. However, it is presently unclear whether serotonergic pathways arising from this nucleus play distinguishing regulatory roles in defensive behaviors that have been associated with specific subtypes of anxiety disorders. Objectives: To evaluate the role of the MRN serotonergic neurons in the regulation of two defensive behaviors, inhibitory avoidance and escape, which have been related, respectively, to generalized anxiety and panic disorders. Methods: Male Wistar rats were submitted to the elevated T-maze test of anxiety after intra-MRN administration of drugs that either non-selectively or selectively change the activity of the serotonergic neurons. Results: Intra-MRN injection of FG 7142 (0.04 and 0.08 nmol) and kainic acid (0.03 and 0.06 nmol), drugs that non-selectively stimulate the MRN serotonergic neurons, facilitated inhibitory avoidance acquisition, but impaired escape performance. Microinjection of muscimol (0.11 and 0.22 nmol), a compound that non-selectively inhibits the activity of the MRN serotonergic neurons, impaired inhibitory avoidance and facilitated escape performance. Both kainic acid and muscimol also changed rat locomotion in the open-field test. Intra-MRN injection of 8-OH-DPAT (0.6-15 nmol) and WAY-100635 (0.18-0.74 nmol), respectively an agonist and an antagonist of somatodendritic 5-HT1A receptors located on serotonergic neurons of the MRN, only affected inhibitory avoidance-while the former inhibited the acquisition of this behavior, the latter facilitated it. Conclusion: MRN serotonergic neurons seem to be selectively involved in the regulation of inhibitory avoidance in the elevated T-maze. This result supports the proposal that 5-HT pathways departing from this nucleus play an important role in anxiety processing, with implications for pathologies such as generalized anxiety disorder.