216 resultados para Immobilized enzyme


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A flow-injection (FI) method was developed for the determination of oxalate in urine. It was based on the use of oxalate oxidase (E.C. 1.2.3.4) immobilized on ground seeds of the BR-303 Sorghum vulgare variety. A reactor was filled with this activated material, and the samples (200 μL) containing oxalate were passed through it, carried by a deionized water flow. The carbon dioxide produced by the enzyme reaction permeated through a microporous PTFE membrane, and was received in a water acceptor stream, promoting conductivity changes proportional to the oxalate concentration in the sample. The results obtained showed a useful linear range from 0.05 to 0.50 mmol dm-3. The proposed method, when compared with the Sigma enzymatic procedure, showed good correlation (Y = 0.006(±0.016) + 0.98(±0.019)X; r = 0.9995, Y = conductivity in μS, and X = concentration in mmol dm-3), selectivity, and sensitivity. The new immobilization approach promotes greater stability, allowing oxalate determination for 6 months. About 13 determinations can be performed per hour. The precision of the proposed method is about ± 3.2 % (r.s.d).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simplified procedure for the preparation of immobilized beta-amylase using non-purified extract from fresh sweet potato tubers is established in this paper, using differently activated agarose supports. Beta-amylase glutaraldehyde derivative was the preparation with best features, presenting improved temperature and pH stability and activity. The possibility of reusing the amylase was also shown, when this immobilized enzyme was fully active for five cycles of use. However, immobilization decreased enzyme activity to around 15%. This seems to be mainly due to diffusion limitations of the starch inside the pores of the biocatalyst particles. A fifteen-fold increase in the Km was noticed, while the decrease of Vmax was only 30% (10.1 U mg-1 protein and 7.03 U mg-1 protein for free and immobilized preparations, respectively). © 2013 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The crude cell-free medium from a culture of Kluyveromyces marxianus var. bulgaricus was immobilized in a gelatin-water support, with an immobilization yield of 82.60% for inulinase activity. The optimum pH for both free and immobilized inulinase was the same (3.5) and the optimum temperatures were 55 degrees C for the free and 60 degrees C for the immobilized enzyme. The Arrhenius plots were linear and activation energies were 56.20 (free enzyme) and 20.27 kj/mol K (immobilized enzyme). The kinetic parameters were calculated by Lineweaver-Burk plots and the V-max and K-m were 37.60 IU/mg protein and 61.83 mM for the free inulinase and 31.45 IU/mg protein and 149.28 mM for the immobilized enzyme, respectively. The operational stability of the immobilized inulinase was studied in a continuous fixed-bed column reactor for 33 days, at the end of which the sucrose conversion was 58.12%. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this work was to develop an efficient reactor for the production of low methoxyl pectin, using pectinmethylesterase (PME, EC 3.1.1.11) from acerola immobilized on silica. The immobilized enzyme was used in up to 50 successive bioconversion runs at 50 degrees C with an efficiency loss of less than 20%. The fixed-bed reactor (6.0 x 1.5 cm) was prepared using PME immobilized in glutaraldehyde-activated silica operated at 50 degrees C with an optimum flow rate of 10 mL h(-1). The bioconversion yield was shown to strongly depend on the nature of the enzymatic preparation. An efficiency of 44% was achieved when concentrated PME was used, compared with only 30% with purified PME, both after an 8-h run. The process described could provide the basis for the development of a commercial-scale process. (c) 2006 Society of Chemical Industry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The optimum conditions for the production of low methoxyl pectin using pectinmethylesterase (PME) from acerola (Malpighia glabra L.), immobilized in gelatin, have been established by factorial design and response surface methodology. In the case of the free enzymes the optimum conditions for activity, within ranges adequate for food processing, are low NaCl concentrations (0.10 M), relatively high temperatures (55 degreesC) and slightly basic pH values (pH = 9). The temperature and pH seem to have strong influence on the observed activity. In the immobilized enzyme, optimum NaCl concentration was 0.15 M, while the optimum pH remained at 9.0. (C) 2003 Elsevier Ltd. All fights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The extracellular tannase from Emericela nidulans was immobilized on different ionic and covalent supports. The derivatives obtained using DEAE-Sepharose and Q-Sepharose were thermally stable from 60 to 75 °C, with a half life (t50) >24 h at 80 °C at pH 5. 0. The glyoxyl-agarose and amino-glyoxyl derivatives showed a thermal stability which was lower than that observed for ionic supports. However, when the stability to pH was considered, the derivatives obtained from covalent supports were more stable than those obtained from ionic supports. DEAE-Sepharose and Q-Sepharose derivatives as well as the free enzyme were stable in 30 and 50 % (v/v) 1-propanol. The CNBr-agarose derivative catalyzed complete tannic acid hydrolysis, whereas the Q-Sepharose derivative catalyzed the transesterification reaction to produce propyl gallate (88 % recovery), which is an important antioxidant. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An endoxylanase from Streptomyces halstedii was stabilized by multipoint covalent immobilization on glyoxyl-agarose supports. The immobilized enzyme derivatives preserved 65% of the catalytic activity corresponding to the one of soluble enzyme that had been immobilized. These immobilized derivatives were 200 times more stable 200 times more stable than the one-point covalently immobilized derivative in experiments involving thermal inactivation at 60 °C. The activity and stability of the immobilized enzyme was higher at pH 5.0 than at pH 7.0. The optimal temperature for xylan hydrolysis was 10 °C higher for the stabilized derivative than for the non-stabilized derivative. On the other hand, the highest loading capacity of activated 10% agarose gels was 75 mg of enzyme per mL of support. To prevent diffusional limitations, low loaded derivatives (containing 0.2 mg of enzyme per mL of support) were used to study the hydrolysis of xylan at high concentration (close to 1% (w/v)). 80% of the reducing sugars were released after 3 h at 55 °C. After 80% of enzymatic hydrolysis, a mixture of small xylo-oligosaccharides was obtained (from xylobiose to xylohexose) with a high percentage of xylobiose and minimal amounts of xylose. The immobilized-stabilized derivatives were used for 10 reaction cycles with no loss of catalytic activity. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg-1), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg-1). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23Na- and 13C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Penicillin G acylase is the second most important enzyme used by industry in an immobilized form. Penicillin hydrolysis is its main application. This reaction is used to produce 6-aminopenicillanic acid (6-APA), an intermediate in the synthesis of semisynthetic antibiotics. This work aims to compare catalytic properties of different penicillin G acylase (PGA) derivatives obtained by multipoint immobilization of the enzyme on macroporous silica. Enzyme amino groups react with different aldehyde groups produced in the support using either glutaraldehyde or glyoxyl activation. In the former method, silica reacts with g-aminopropyltriethoxysilane (g-APTS) and glutaraldehyde; in the latter, a reaction with glycidoxypropyltrimethoxysilane (GPTMS) is followed by acid hydrolysis and oxidation using sodium periodate. This work determines the influence of degree of activation, using glutaraldehyde, on immobilization parameters. PGA was immobilized on these two different supports. Maximum enzyme load, immobilized enzyme activity (derivative activity), rate of immobilization and thermal stability were checked for both cases. For glutaraldehyde activation, the results showed that 0.5% of the g-APTS is sufficient for all the hydroxyl groups in the silica to react. They also showed that degree of activation only affects immobilization yield and reaction velocity and that reduction of the glutaraldehyde derivatives with sodium borohydride does not affect their thermal stability. In comparing the derivatives obtained using glyoxyl and glutaraldehyde activation, it was observed that the glyoxyl derivatives presented better immobilization parameters, with a maximum enzyme load of 264 IU/g silica and a half-life of 20 minutes at 60 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invertase was immobilized on aminopropyl silica (APTS-SiO2) activated with humic substances (APTS-SiO2-HS) and on aminopropyl silica activated with glutaraldehyde (APTS-SiO2-GA). The resulting activity of both systems was compared. Humic substances (HS) used for the activation of the silica were extracted from soil of Cananéia, São Paulo State, Brazil, according to the procedure recommended by the International Humic Substances Society. Activity was determined by measuring the rate of formation of reduced sugars using the reaction with dinitrosalicylic acid (DNS). The amount of HS bound on the APTS-SiO2 was equal to 50 mg. The maximum amount of invertase immobilized on APTS-SiO2-HS was 15200 U/g while in the system APTS-SiO2-GA it was 13400 U/g. The experimental enzymatic activity was 3700 and 3300 U/g, for the systems APTS-SiO2-HS and APTS-SiO2-GA, respectively. Considering the increased amount and activity of immobilized enzyme compared with the glutaraldehyde method, it was concluded that this technique opens a new perspective in the preparation of supports for enzyme immobilization employing humic substances. © Springer-Verlag 2000.