458 resultados para Hydrated cements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations point out that the participation of water can effectively lower the barrier height for the isomerization process between hydrated oxide cation, MO(H2O)(+), and dihydroxide cation, M(OH)(2)(+), (M = V, Nb and Ta). The catalytic effect is achieved by a water-assisted mechanism in which water acts as proton donor and acceptor, via a transition structure corresponding to a six-membered ring. In the case of vanadium atom, the presence of two water molecules has been taken into account and the tautomerization becomes nearly barrierless, decreasing both the stability of the transition structures relative to intermediates and the depths of wells associated with the intermediates. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the setting time and the thermal expansion coefficient of 2 endodontic cements, MTA-Angelus and a novel cement called CER. The setting time was determined in accordance to ANSI/ADA specifications no. 57. Three samples of 10 mm diameter and 2 mm thickness were prepared for each cement. The thermal expansion measurements were performed by strain gauge technique. Four samples of each cement were prepared using silicone rings of 5 mm diameter and 2 mm thickness. The data were analyzed statistically using the Student t test. The setting time obtained for the MTA-Angelus and CER cements was 15 (SD 1) min and 7 (SD 1) min, respectively. The linear coefficient of thermal expansion was 8.86 (SD 0.28) mu strain/degrees C for MTA-Angelus and 11.76 (SD 1.20) mu strain/degrees C for CER. The statistical analysis showed significant difference (P < .05) in the setting time and linear coefficient of thermal expansion between the 2 cements. The CER cement has a coefficient of expansion similar to dentin, which could contribute to a decrease of microleakage degree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral trioxide aggregate (MTA) and Portland cement are being used in dentistry as root end-filling materials. However, biocompatibility data concerning genotoxicity and cytotoxicity are needed for complete risk assessment of these compounds. In the present study, genotoxic and cytotoxic effects of MTA and Portland cements were evaluated in vitro using the alkaline single cell gel (comet) assay and trypan blue exclusion test, respectively, on mouse lymphoma cells. The results demonstrated that the single cell gel (comet) assay failed to detect DNA damage after a treatment of cells by MTA and Portland cements for concentrations up to 1000 mu g/ml. Similarly, results showed that none of the compounds tested were cytotoxic. Taken together, these results seem to indicate that MTA and Portland cements are not genotoxins and do not induce cellular death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral trioxide aggregate (MTA) and Portland cement are being used in dentistry as root-end-filling material for periapical surgery and for the sealing of communications between the root canal system and the surrounding tissues. However, genotoxicity tests for complete risk assessment of these compounds have not been conducted up to now. In the present study, the genotoxic effects of MTA and Portland cements were evaluated in peripheral lymphocytes from 10 volunteers by the alkaline single cell gel (comet) assay. The results pointed out that the single cell gel (comet) assay failed to detect the presence of DNA damage after a treatment of peripheral lymphocytes by MTA and Portland cements for concentrations up to 1000 mu g mL(-1). In summary, our results indicate that exposure to MTA or Portland cements may not be a factor that increases the level of DNA lesions in human peripheral lymphocytes as detected by single cell gel (comet) assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass ionomer cements are widely used in dentistry as restorative materials and adhesives for composite restorations. However, the results of genotoxicity studies using these materials are inconclusive in literature. The goal of this study was to examine the genotoxic and cytotoxic potential of three different glass ionomer cements available commercially (Ketac Cem, Ketac Molar and Vitrebond) by the single cell gel (comet) assay and trypan blue exclusion test, respectively. For this, such materials were exposed to Chinese hamster ovary (CHO) cells in vitro for 1 h at 37 degrees C. Data were assessed by Kruskall-Wallis nonparametric test. The results showed that the powder from Ketac Molar displayed genotoxicity only in the maximum concentration evaluated (100 mu g/mL). In the same way, the liquid from Vitrebond at 0.1% dilution caused an increase of DNA injury. Significant differences (P < 0.05) in cytotoxicity provoked by all powders tested of glass ionomer cements were observed for exposure at 1000 mu g/mL concentration. With respect to liquids of glass ionomer cements evaluated, the major toxic effect on cell viability was produced at 10%, beginning at the dilution of 0.5% for Vitrebond. Taken together, we conclude that some components of glass ionomer cements show both genotoxic and cytotoxic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass-ionomer cements are widely used in dentistry as restorative materials and adhesives for composite restorations. A number of genotoxicity studies have been conducted using these materials with results conflicting so far. Thus, the approach was aimed to look at the genotoxic and cytotoxic potential of three different glass-ionomer cements available commercially (Ketac Cem, Ketac Molar and Vitrebond) by the single cell gel (comet) assay and trypan blue exclusion test, respectively. For this, such materials were exposed to mouse lymphoma cells in vitro for 1 h at 37 degrees C. Data were assessed by Kruskall-Wallis non-parametric test. The results showed that all powders assayed did not show genotoxic effects. on the other hand, the liquid from Vitrebond at 0.1% dilution caused an increase of DNA injury. Significant statistically differences (P < 0.05) in cytotoxicity provoked by all powders tested were observed for exposure at 1000 mu g mL(-1) concentration and 100 mu g mL(-1) for Ketac Molar. With respect to liquids of glass-ionomer cements evaluated, the major toxic effect on cell viability was produced at 1%, beginning at the dilution of 0.5% for Vitrebond. Taken together, these results support the notion that some components of glass-ionomer cements show both genotoxic and cytotoxic effects in higher concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cárie secundária representa problema de saúde pública e socioeconômico no mundo. A restauração de dentes acometidos por cárie pode criar condições favoráveis à proliferação microbiana na superfície do material restaurador ou na interface dente/restauração, criando ambiente propício para o estabelecimento de cárie secundária. O objetivo deste estudo foi avaliar a capacidade de retenção de placa bacteriana em cimentos de ionômero de vidro convencionais (Chelon-Fil e Vidrion R) e modificados por resina (Vitremer e Fuji II LC) e de resina composta híbrida (Z100), utilizada como controle. Nos testes de retenção de microrganismos, in situ, 12 voluntários utilizaram, por 7 dias, placa de Hawley contendo corpos-de-prova de todos os materiais. A seguir, os corpos-de-prova foram transferidos para tubos contendo 2,0 ml de Ringer-PRAS e os microrganismos presentes em sua superfície foram cultivados em placa com ágar-sangue e ágar Mitis Salivarius Bacitracina, os quais foram incubados, a 37ºC, em anaerobiose (90% N2, 10% CO2), por 10 e 2 dias, respectivamente. Os ionômeros modificados por resina retiveram quantidade de bactérias similar àquela mostrada pela resina testada. Os ionômeros modificados por resina também apresentaram menor número de estreptococos do grupo mutans do que a resina e os cimentos ionoméricos convencionais. Os ionômeros de vidro convencionais apresentaram menor número de estreptococos do grupo mutans que a resina, sendo que essa diferença não foi estatisticamente significativa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the surface microhardness of four glass ionomer cements and a composite resin (Fuji IX, Ketac Molar, Vidrion R, Vitromolar and Z 250). Ten specimens of each glass ionomer cement with 8.0 mm diameter and 5.0 mm high dimensions were made and Vicker's microhardness measurements were taken at 1 day and 1 week after initial setting reaction. The results were analyzed using Student's T test and Tukey test (p < 0.05) and demonstrated that the values of microhardness increased after 1 week, with the exception of Fuji IX. Resin composite Z250 presented the greatest values for microhardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in vitro antibacterial activity of four glass ionomer cements ( Fuji IX, Ketac Molar, Vidrion R and Vitromolar) indicated for Atraumatic Restorative Treatment ( ART) was studied against strains of bacteria involved in the development of oral diseases, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus and Actinomyces viscosus. The agar plate diffusion test was used for the cultures, which included chlorhexidine as a positive control. The results demonstrated that all the cements evaluated presented antibacterial activity. Based on the results of this study, it can be concluded that Fuji IX and Ketac Molar presented the most effective antibacterial activity considering the ART approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the cytotoxic effects of five glass-ionomer cements (GICs) on an odontoblast cell line (MDPC-23), disks of every material were prepared and divided into Group 1: Vitrebond, Group 2: Vitremer, Group 3: Fuji IILC, Group 4: Fuji IX GP, Group 5: Ketac-Molar, Group 6: Z-100 (positive control). In Group 7, phosphate-buffered saline solution (negative control) was applied on filter paper. After placing the samples in the bottom of wells, the cells (30,000 cells/cm(2)) were plated and incubated for 72 h. The cell number was counted, the cell morphology was assessed by scanning electron microscopy and the cell metabolism was evaluated using methyltetrazolium assay. The statistical analysis of Kruskal-Wallis was used to determine if the scores obtained for the cell metabolism and number of cells were different at the 95% confidence level. In groups 1, 2, 3, 4, 5, and 6 the materials decreased the cell number by 74.5% 75.5%, 45.5%, 29.5%, 32.5%, and 88.5%, respectively. In groups 1, 2, 3, 4, and 5, the experimental GICs reduced the cell metabolism by 79%, 84%, 54%, 40%, and 42.5%, respectively. Despite the fact that all experimental materials were cytotoxic to the MDPC-23 cells, the GICs were the least cytotoxic. on the other hand, the RMGICs caused the highest cytophatic effects. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose was to evaluate the cytotoxicity of two novel formulations (alpha and beta) of calcium phosphate cements. Positive control, represented by a commercial hydroxyapatite cement, and negative control were included for comparative purposes. A continuous lineage of fibroblastic cells was used, and the effect of the tested materials on both cell proliferation and viability was assessed by counting cell number on hemocytometer and by the trypan blue exclusion test, respectively. Study design attempted to simulate clinical use by allowing direct and indirect contact of cells and cements. Results were analyzed by the Kruskal-Wallis test and indicated that the beta formulation was extremely cytotoxic (P < 0.001), because this material induced the greatest reduction on cell proliferation and viability. The alpha formulation behaved similarly to the positive control regarding its effect on cell proliferation and viability. Thus, it is concluded that alpha formulation has promise for further evaluation of its behavior in vivo.