29 resultados para Grow-out
Resumo:
We evaluated the water characteristics and particle sedimentation in Macrobrachium amazonicum (Heller 1862) grow-out ponds supplied with a high inflow of nutrient-rich water. Prawns were subject to different stocking and harvesting strategies: upper-graded juveniles, lower-graded juveniles, non-graded juveniles + selective harvesting and traditional farming (non-grading juveniles and total harvest only). Dissolved oxygen, afternoon N-ammonia and N-nitrate and soluble orthophosphate were lower in the ponds in comparison with inflow water through the rearing cycle. Ponds stocked with the upper population fraction of graded prawns showed higher turbidity, total suspended solids and total Kjeldahl nitrogen than the remaining treatments. An increase in the chemical oxygen demand:biochemical oxygen demand ratio from inlet (4.9) to pond (7.1-8.0) waters indicated a non-readily biodegradable fraction enhancement in ponds. The sedimentation mean rate ranged from 0.08 to 0.16 mm day(-1) and sediment contained >80% of organic matter. The major factors affecting pond ecosystem dynamic were the organic load (due to primary production and feed addition) and bioturbation caused by stocking larger animals. Data suggest that M. amazonicum grow-out in ponds subjected to a high inflow of nutrient-rich water produce changes in the water properties, huge accumulation of organic sediment at the pond bottom and non-readily biodegradable material in the water column. However, the water quality remains suitable for aquaculture purposes. Therefore, nutrient-rich waters, when available, may represent a source of unpaid nutrients, which may be incorporated into economically valued biomass if managed properly.
Resumo:
The effects of intensification on growth, survival, productivity, population structure, and distribution of harvested biomass in individual size classes of Macrobrachium amazonicum in semi-intensive culture were evaluated. Postlarvae (0.01 g) were stocked in 12 ponds at densities of 10, 20, 40, and 80/m(2) (three replicates per treatment) and raised for 5.5 mo. Average individual weight significantly decreased and productivity significantly increased as stocking density increased (P < 0.001), while survival was not affected (P > 0.05). Prawn mean weight at harvest ranged from 3.6 (80/m(2)) to 7.0 g (10/m(2)). Average survival ranged from 65.5% (40/m(2)) to 72.8% (20/m(2)), while productivity ranged from 508 (10/m(2)) to 2051 kg/ha (80/m(2)). Harvested biomass showed a clear bimodal distribution in individual size classes indicating the occurrence of heterogeneous growth, which may affect management and market strategies. Harvested biomass of prawns weighing more than 7 g (the best market size) increases for stocking densities up to 40/m(2) and stabilizes between 40 and 80/m(2). Growth reduction was associated with a decreasing frequency and average weight of green claw 1 and green claw 2 male morphotypes and adult females as density increased. Thus, the distribution of male morphotypes and sexually mature females are affected by density-dependent factors. Results suggest that prawn density plays an important role on M. amazonicum grow-out phase, as has been demonstrated for other species of the genus Macrobrachium. M. amazonicum tolerates grow-out intensification and may be raised in both semi-intensive and intensive systems stocked at very high densities yielding high productivity.
Resumo:
The aim of this study was to evaluate the effect of stocking ponds using graded and ungraded juveniles and performing drained and combined harvesting on the production of M. amazonicum. A randomized completed-blocks design with 4 treatments (farming strategies) and 3 replicates was used. Treatments were: Upper size-graded juveniles, Lower size-graded juveniles, Ungraded juveniles, all with total drained harvesting, and Combined Harvesting (ungraded juveniles). Twelve earthen ponds were stocked at 40 juveniles.m -2, according to the treatment. After 3.5 months prawns were completely harvested. Lower size-graded prawns showed smaller average weight (3.37 ± 0.25 g) than upper size-graded (4.03 ± 0.40 g) and ungraded ones (3.80 ± 0.16 g). Survival percentage varied from 68 ± 9 to 76 ± 10, productivity was slightly higher than 1,000 kg.ha -1 and apparent feed conversion rate varied from 3.0 ± 0.7 to 3.7 ± 1.3. These parameters did not differ among the farming strategies. The best strategy for short term grow-out M. amazonicum in earthen ponds is stocking ungraded juveniles and performing total harvesting by draining ponds at the end of rearing cycle. Grading juveniles before stocking and selective-harvesting managements are not advantageous because they increase costs and do not improve any production parameter.
Resumo:
Studies to determine suitable levels of intensification are essential for developing sustainable aquaculture. The objective of this study was to evaluate the quality of effluents discharged from ponds stocked with 10 (D10), 20 (D20), 40 (D40), and 80 (D80) postlarvae of Macrobrachium amazonicum/m2. Intake and effluent water samples were taken throughout a 5.5-mo grow-out cycle. In that study, twelve 0.01-ha earthen ponds were stocked postlarvae with 0.01g. Average water exchange rate was 15%/d; water was discharged from the bottom of the ponds. Prawns were fed a commercial feed with 38% crude protein according to their biomass (3-10%) and the concentration of dissolved oxygen (DO). In our research, temperature, turbidity, total suspended solids, conductivity, DO, pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), N-ammonia, N-nitrite, N-nitrate, N-Kjeldahl nitrogen, total phosphorus, and soluble orthophosphate were measured every 15d throughout the experiment in the early morning (0630 to 0730h). Turbidity was lower in D10 than in D20 and D40 and total phosphorus was higher in D80 than in D10 and D20. An analysis of principal components comparing treatments and intake water showed three groups: intake, D10 and a cluster of D20, D40, and D80. On the basis of the water characteristics found in our study it appears that the farming of M. amazonicum is likely to have a low environmental impact, at least up to a stocking density of 80prawns/m2. © by the World Aquaculture Society 2013.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this experiment was to evaluate the hypothesis that the M. amazonicum prawns accept feeding in trays. Six ponds were stocked with 10 juveniles II (1.2 +/- 0.7 g) per m(2) in 02/14/2003. An entirely randomized experimental design with 2 treatments (feeding in trays or feeding to the throw) and 3 replicates was used. Prawn average weight, survival, productivity, and physical and chemical variables of the water were compared between treatments using "t" test of Student. Average weight, survival and productivity were, respectively, 7.2 +/- 0.3 g, 46.8 +/- 7.8% and 335 +/- 45 kg/ha in feeding tray treatment and 6.8 +/- 0.1 g, 85.8 +/- 5.2% and 586 +/- 42 kg/ha in feed to the throw treatment. Survival and productivity differed significantly (p<0.5), while that average weight didn't differ significantly. M. amazonicum needs to use further number of trays per area, possibly due to territorial and aggressive behavior.
Resumo:
The implementation of a hypothetical aquaculture facility with hatchery, nursery and grow-out earthen ponds for raising the Amazon River Prawn Macrobrachium amazonicum in the Pantanal was considered. Eight larviculture cycles per year were projected: four to produce post-larvae for stocking in grow-out bait ponds, and four to stock nursery tanks to sell juveniles as seed to grow-out farms, which produce prawns for human consumption. Annual production would be 146,880 dozen bait prawns and 2,938 thousand juveniles. The assumed sale prices were US$ 1.38 per dozen baits and US$ 15.39 per thousand juveniles. The net present value was US$ 555,890.79, internal rate of return was 48% per year, payback period was 2.4 years and benefit-cost ratio was 3.90. The breakeven price to cover total costs per dozen baits was US$ 0.70 and per thousand juveniles was US$ 17.00, indicating that the selling price assumed for juveniles in base scenario is not realistic. Net return was US$ 84,773.80. The results indicate that this activity would be a lucrative and attractive investment in the Pantanal.
Resumo:
A comparison of the cheliped's weight in two species of the genus Callinectes was accomplished. The species C. danae e C. ornatus were collected by two otter trawl in Ubatuba bay (23 degrees 26' S and 45 degrees 02' W). The allometric constants obtained from the regression adjusted to a power function (Y = aX(b)) were analyzed. These species presented different allometry degrees for each sex considered. The relation Pe x PC presented positive allometry for sex of both species, but male presented higher positive allometry than female. C. danae presented higher positive allometry for chelipeds than C. ornatus. We suggest here that C. danae could be indicated to be submitted to grow out in ponds since it reaches higher size and bigger chelipeds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A comparison of the cheliped's weight in two species of the genus Callinectes was accomplished. The species C. danae e C. ornatus were collected by two otter trawl in Ubatuba bay (23°26' S and 45°02' W). The allometric constants obtained from the regression adjusted to a power function (Y = aXb) were analyzed. These species presented different allometry degrees for each sex considered. The relation PQ x PC presented positive allometry for sex of both species, but male presented higher positive allometry than female. C. danae presented higher positive allometry for chelipeds than C. ornatus. We suggest here that C. danae could be indicated to be submitted to grow out in ponds since it reaches higher size and bigger chelipeds. © 1998, Paraná Institute of Technology Publication.
Resumo:
The increased demand for juvenile tambaqui Colossoma macropomum for grow-out ponds and stocking programs in the Amazon state of Brazil has increased the transportation of this species. This study was designed to determine the optimum density of juvenile tambaqui during transportation in closed containers. Fish (51.9 ± 3.3 g and 14.9 ± 0.4 cm) were packed in sealed plastic bags and transported for 10 h at four densities: 78, 156, 234, and 312 kg/m3. After transportation, fish from each density were kept in separate 500-L tanks for 96 h. Mortality, 96-h cumulative mortality, water quality, and blood parameters (hematocrit, plasma cortisol, and glucose) were monitored. Fish mortality after transportation was significantly lower at densities of 78 and 156 kg/m3 than at 234 and 312 kg/m3. Cumulative mortality was significantly lower at a density of 78 kg/m3. Dissolved oxygen after 10 h of transportation remained high at a density of 78 kg/m3, but reached critically low values at all other densities. Ammonia concentration was highest at the lowest density and was lower at higher densities. Carbon dioxide concentration was lowest at the density of 78 kg/m3 but higher in the other treatments. Plasma glucose and cortisol increased significantly immediately after transportation at densities of 156, 234, and 312 kg/m3, returning to control values by 24 h. The best density for juvenile tambaqui during a 10-h transportation haul in a closed container was 78 kg/m3. At this density there was no fish mortality, water quality was kept within acceptable values, and fish were not stressed.
Resumo:
This study evaluated selected limnological variables in inlet water in six sequentially distributed semi-intensive fishponds. Data were collected during 15 consecutive days in three distinct grow-out periods (May, October and January). Only phosphorus and pH varied among sites and periods (p < 0.01); the opposite (p > 0.05) occurred in the cases of nitrite and dissolved oxygen. No variation was reported with regard to dissolved oxygen, conductivity, alkalinity, free CO2, bicarbonate, chlorophyll-a, nitrite and ammonia did not vary throughout the period (p > 0.05). In May, or rather, the final grow-out period, the fishponds displayed high concentrations, mainly in nitrogen compounds. As from fishpond 3, the inlet water contained high levels of nutrients. The water is passed from pond to pond, evidencing the need for management practices adequate to the specific conditions of each pond. Water quality should be monitored more frequently during high grow-out period when food addition is more intense. Thereafter, more care should be taken, as highest phosphorus concentrations occurred in May.
Caracterização de efluentes de viveiros de engorda de rã-touro (lithobates catesbeianus, Shaw, 1802)
Resumo:
Aim: Current analysis characterizes the effluent from bullfrog-rearing ponds during the grow-out phase; Methods: Temperature, pH, dissolved oxygen, electric conductivity, turbidity, total phosphorus, N-NH3, N-NO3, BOD5 and COD and the number of thermotolerant coliforms (Escherichia coli) of the inlet and outlet water of the ponds were analyzed twice a week. Assay consisted of a completely randomized experimental design with two treatments (inlet and outlet water) and six repetitions in a split-plot, coupled to collection over time as subplot; Results: All variables were significantly different (p < 0.05) between treatments and over time (p < 0.05). Average rates of temperature, pH and dissolved oxygen levels of the supply water were higher when compared to those of the effluent. The other variables such as conductivity, turbidity, total phosphorus, ammonia, nitrate, biological oxygen demand, chemical oxygen demand and E. coli were higher in the effluent when compared to rates in the supply water; Conclusions: The management during grow-out phase caused the deterioration of the water quality, with increasing levels of dissolved nutrients and the number of thermotolerant coliform. Ammonia and phosphorus levels in the effluent, caused by waste food, skin and feces, accelerate the eutrophication process of the receiving water body. Further studies on effluent treatment are required.
Resumo:
The effects of artificial substrate and night-time aeration on the culture of Macrobrachium amazonicum were evaluated in 12 ponds stocked with 45 prawns m-2. A completely randomized design in 2 × 2 factorial scheme with three replicates was used. The combination of factors resulted in four treatments: with substrate and aeration (SA), with substrate and without aeration (SWA), without substrate and with aeration (WSA) and without substrate and aeration (WSWA). The presence of substrate in SA and SWA treatments reduced suspended particles (seston) by ~17.3% and P-orthophosphate by ~50%. The use of aerator (WSA and SA treatments) significantly (P < 0.05) increased the concentration of dissolved oxygen, suspended particles and nutrients in the pond water. These results indicate that the effect of substrate on turbidity and total suspended solids (TSS) values is opposite to the effect of the aerator. The aerators in semi-intensive grow-out M. amazonicum farming lower water quality because they increased the amount of detritus and nutrients in the pond water. On the other hand, the use of artificial substrate reduces turbidity values, chlorophyll a, TSS and P-orthophosphate concentrations. Therefore, the combination of substrate addition and night-time aeration is not interesting because they have opposite effects. © 2013 John Wiley & Sons Ltd.