21 resultados para GAB model
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dados de equilíbrio da umidade da polpa de manga foram determinados utilizando-se o método estático gravimétrico. As isotermas de adsorção e dessorção foram obtidas na faixa de 30-70 ºC e as atividades de água (a w) de 0,02 a 0,97. A utilização do modelo de GAB nos resultados experimentais, através da análise de regressão não linear, proporcionou um bom ajuste entre os dados experimentais e os valores calculados. O calor isostérico de sorção foi estimado a partir dos dados de equilíbrio de sorção, utilizando-se a equação de Clausius-Clayperon. Notou-se que os calores isostéricos de sorção crescem com o aumento da temperatura e pode ser bem ajustado através de uma relação exponencial. A teoria da compensação entalpia-entropia foi aplicada às isotermas de sorção e gráficos deltaH versus deltaS forneceram as temperaturas isocinéticas, indicando um processo de sorção entalpicamente controlado.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O Brasil é considerado um dos maiores produtores e consumidores de frutas tropicais. O coco verde (Cocos nucifera L.) se destaca tanto em termos de produção e consumo quanto em quantidade de resíduos gerada por indústrias de água de coco e pelo consumo in natura. Portanto, existe uma necessidade de aproveitamento deste subproduto. Este trabalho teve por objetivo estudar as isotermas de adsorção da polpa de coco verde e determinação do calor isostérico de sorção. As isotermas de adsorção para as temperaturas de 30, 40, 50, 60 e 70 °C foram analisadas e evidenciaram curvas do tipo III, típicas de alimentos ricos em açúcares. Os dados experimentais de umidade de equilíbrio foram correlacionados por modelos da literatura. O modelo de GAB apresentou melhor concordância com os dados experimentais, entre os modelos avaliados. O calor isostérico de sorção é considerado um indicativo de forças atrativas intermoleculares entre os sítios de sorção de vapor de água, consequentemente, um importante fator para predizer a vida de prateleira de produtos desidratados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Moisture equilibrium data of pineapple pulp (PP) powders with and without additives - 18% maltodextrin (MD) or 18% gum Arabic (GA) - were determined at 20, 30, 40 and 50 degrees C by using the static gravimetric method in a water activity range of 0.06-0.90. The obtained isotherms were sigmoid, typical type 111, and the Guggenhein-Anderson-de Boer (GAB) model was fitted to the experimental data of equilibrium moisture content versus water activity. Addition of additives was shown to affect the isotherms in such a way that, at the same water activity, samples PP + GA and PP + MD presented lower equilibrium moisture content and were not so affected by varying temperature. The net isosteric heats of sorption of pulp powders with additives were higher (less negative) than those of pineapple pulp powders, suggesting that there are more active polar sites in the product without addition of GA or MD. An empirical exponential relationship could describe the heat of sorption dependence on the material moisture content. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Sorption isotherms were determined for salted alligator's meat at four different temperatures (10degreesC, 15degreesC, 25degreesC and 35degreesC), using a standard gravimetric method. The goodness of fit of five sorption models to experimental data was determined. Five models, namely the GAB, the BET, the Halsey, the Henderson and the Hailwood and Horrobin, were evaluated to determine the best fit for the experimental data. The GAB was the best fitted model for the data of salted alligator's meat with an average error less than 10% for temperature of 10degreesC and less than 5% for the others temperatures. The coefficients of determination (r(2)) were 0.99 for all temperatures considered. The monolayer values decreased as temperature increased. The other four models were not appropriated to fit the data because of the high error values, although the r(2) were also similar to the GAB model. The net isosteric heat of sorption was estimated from equilibrium sorption data, using the Clausis-Clapeyron equation. Isosteric heats of sorption were found to increase with increasing temperature and could be well adjusted by an exponential relationship. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Moisture equilibrium data of persimmon skin and pulp were determined using the static gravimetric method. Adsorption and desorption isotherms were obtained in the range of 20-70°C, to water activities (a w) from 0.02 to 0.85. The application of the GAB model to the experimental results, using direct nonlinear regression analysis, provided a good agreement between experimental and calculated values. The net isosteric heat of sorption was estimated from equilibrium sorption data, using the Clausius-Clapeyron equation. Isosteric heats of sorption were found to increase with increasing temperature and could be well adjusted by an exponential relationship. The enthalpy-entropy compensation theory was applied to sorption isotherms and plots of ΔH versus ΔS for skin and pulp provided the isokinetic temperatures, indicating an enthalpy controlled sorption process. © 2000 Elsevier Science B.V.
Resumo:
Differential scanning calorimetry (DSC) was used to determine phase transitions of freeze-dried plums. Samples at low and intermediate moisture contents, were conditioned by adsorption at various water activities (0.11≤a w≤0.90) at 25°C, whereas in the high moisture content region (a w>0.90) samples were obtained by direct water addition, with the resulting sorption isotherm being well described by the Guggenheim-Anderson-deBoer (GAB) model. Freeze-dried samples of separated plum skin and pulp were also analysed. At a w≤0.75, two glass transitions were visible, with the glass transition temperature (T g) decreasing with increasing a w due to the water plasticising effect. The first T g was attributed to the matrix formed by sugars and water. The second one, less visible and less plasticised by water, was probably due to macromolecules of the fruit pulp. The Gordon-Taylor model represented satisfactorily the matrix glass transition curve for a w≤0.90. In the higher moisture content range T g remained practically constant around T g′ (-57.5°C). Analysis of the glass transition curve and the sorption isotherm indicated that stability at a temperature of 25°C, would be attained by freeze dried plum at a water activity of 0.04, corresponding to a moisture content of 12.9% (dry basis). © 2006 SAGE Publications.
Resumo:
Three different types of maltodextrin encapsulated dehydrated blackberry fruit powders were obtained using vibrofluidized bed drying (VF), spray drying (SD), vacuum drying (VD), and freeze drying (FD). Moisture equilibrium data of blackberry pulp powders with 18% maltodextrin were determined at 20, 30, 40, and 50°C using the static gravimetric method for the water activity range of 0.06-0.90. Experimental equilibrium moisture content data versus water activity were fit to the Guggenheim-Anderson-de Boer (GAB) model. Agreement was found between experimental and calculated values. The isosteric heat of sorption of water was determined using the Clausius-Clapeyron equation from the equilibrium data; isosteric heats of sorption were found to increase with increasing temperature and could be adjusted by an exponential relationship. For freeze dried, vibrofluidized, and vacuum dried pulp powder samples, the isosteric heats of sorption were lower (more negative) than those calculated for spray dried samples. The enthalpy-entropy compensation theory was applied to sorption isotherms and plots of ΔH versus ΔS provided the isokinetic temperatures, indicating an enthalpy-controlled sorption process.
Resumo:
Banana is an agricultural product of great economic importance for various developing countries. The relationship between moisture content and water activity provides useful information for the processing and storage of banana waste. The water activity and moisture content of three banana (Mussa spp. Haploid AAB cv. Nanica) waste items were analyzed to determine the desorption isotherms at six different temperatures (20, 30, 40, 50, 60 and 70°C). The desorption isotherms of the peel, pedicel and pulp of overripe bananas were determined in wide ranges of moisture content (0.001-6.360 kg kg-1 d.b.) and water activity (0.02-0.907). The theoretical GAB model was used for modelling the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to compute the isosteric heat of sorption, the differential entropy and Gibbs' free energy by way of the GAB model when the effect of temperature on the hygroscopic equilibrium was considered. © 2012 de Gruyter. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)