16 resultados para Food web


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two fish species, one top predator (Imparfinis mirini) and one intermediate detritivorous species (Hisonotus depressicauda), were experimentally manipulated to evaluate their relative importance in structuring the periphytic community, as well as their effects on the other trophic levels. An enclosure experiment was conducted in the Potreirinho creek, a second order tributary of Paranapanema River, SE Brazil. Five treatments were used: enclosure of the predator species. enclosure of the detritivorous species, enclosure of both together, exclusion of all fish species (closed control cage), and cage open to all fish community, (open control). Through direct and indirect effects, I. mirini, when alone gave rise to a trophic cascade that resulted in a positive effect on algal resources. Through direct effects, H. depressicauda. when alone, reduced the amount of organic matter, resulting in a positive indirect effect on algae. In addition, when the two species were enclosed together, only the effects determined by the detritivorous species were present. The results indicate the important role of the intermediate detritivorous species in the maintenance of the composition and trophic structure of the analyzed community by reducing the effects caused by the top predator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the structure and properties of a tropical stream food web in a small spatial scale, characterizing its planktonic, epiphytic and benthic compartments. The study was carried out in the Potreirinho Creek, a second-order stream located in the south-east of Brazil. Some attributes of the three subwebs and of the conglomerate food web, composed by the trophic links of the three compartments plus the fish species, were determined. Among compartments, the food webs showed considerable variation in structure. The epiphytic food web was consistently more complex than the planktonic and benthic webs. The values of number of species, number of links and maximum food chain length were significantly higher in the epiphytic compartment than in the other two. Otherwise, the connectance was significantly lower in epiphyton. The significant differences of most food web parameters were determined by the increase in the number of trophic species, represented mainly by basal and intermediate species. High species richness, detritus-based system and high degree of omnivory characterized the stream food web studied. The aquatic macrophytes probably provide a substratum more stable and structurally complex than the sediment. We suggest that the greater species richness and trophic complexity in the epiphytic subweb might be due to the higher degree of habitat complexity supported by macrophyte substrate. Despite differences observed in the structure of the three subwebs, they are highly connected by trophic interactions, mainly by fishes. The high degree of fish omnivory associated with their movements at different spatial scales suggests that these animals have a significant role in the food web dynamic of Potreirinho Creek. This interface between macrophytes and the interconnections resultant from fish foraging, diluted the compartmentalization of the Potreirinho food web.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Although several species of Peucetia (Oxyopidae) live strictly in association with plants bearing glandular trichomes worldwide, to date little is known about whether these associations are mutualistic.2. In this study we manipulated the presence of Peucetia flava on the glandular plant Rhynchanthera dichotoma in the rainy and post-rain season, to test the strength of its effects on leaf, bud, and flower damage and plant reproductive output. In addition, we ran independent field experiments to examine whether these sticky structures improve spider fidelity to plants.3. Peucetia suppressed some species of foliar phytophages, but not others. Although spiders have reduced levels of leaf herbivory, this phenomenon was temporally conditional, i.e. occurred only in the post-rain but not in the rainy season. Floral herbivory was also reduced in the presence of spiders, but these predators did not affect plant fitness components.4. Plants that had their glandular trichomes removed retained fewer insects than those bearing such structures. Spiders remained longer on plants with glandular trichomes than on plants in which these structures had been removed. Isotopic analyses showed that spiders that fed on live and dead labelled flies adhered to the glandular hairs in similar proportions.5. Spiders incurred no costs to the plants, but can potentially increase individual plant fitness by reducing damage to reproductive tissues. Temporal conditionality probably occurred because plant productivity exceeded herbivore consumption, thus dampening top-down effects. Specialisation to live on glandular plants may have favoured scavenging behaviour in Peucetia, possibly an adaptation to periods of food scarcity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small (< 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure. © 2013 Blackwell Publishing Ltd/CNRS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)