48 resultados para Feed rate
Resumo:
An accurate estimate of machining time is very important for predicting delivery time, manufacturing costs, and also to help production process planning. Most commercial CAM software systems estimate the machining time in milling operations simply by dividing the entire tool path length by the programmed feed rate. This time estimate differs drastically from the real process time because the feed rate is not always constant due to machine and computer numerical controlled (CNC) limitations. This study presents a practical mechanistic method for milling time estimation when machining free-form geometries. The method considers a variable called machine response time (MRT) which characterizes the real CNC machine's capacity to move in high feed rates in free-form geometries. MRT is a global performance feature which can be obtained for any type of CNC machine configuration by carrying out a simple test. For validating the methodology, a workpiece was used to generate NC programs for five different types of CNC machines. A practical industrial case study was also carried out to validate the method. The results indicated that MRT, and consequently, the real machining time, depends on the CNC machine's potential: furthermore, the greater MRT, the larger the difference between predicted milling time and real milling time. The proposed method achieved an error range from 0.3% to 12% of the real machining time, whereas the CAM estimation achieved from 211% to 1244% error. The MRT-based process is also suggested as an instrument for helping in machine tool benchmarking.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Considering the constant technological developments in the aeronautical, space, automotive, shipbuilding, nuclear and petrochemical fields, among others, the use of materials with high strength mechanical capabilities at high temperatures has been increasingly used. Among the materials that meet the mechanical strength and corrosion properties at temperatures around 815 degrees C one can find the nickel base alloy Pyromet 31V (SAE HEV8). This alloy is commonly applied in the manufacturing of high power diesel engines exhaust valves where it is required high resistance to sulphide, corrosion and good resistance to creep. However, due to its high mechanical strength and low thermal conductivity its machinability is made difficult, creating major challenges in the analysis of the best combinations among machining parameters and cutting tools to be used. Its low thermal conductivity results in a concentration of heat at high temperatures in the interfaces of workpiece-tool and tool-chip, consequently accelerating the tools wearing and increasing production costs. This work aimed to study the machinability, using the carbide coated and uncoated tools, of the hot-rolled Pyromet 31V alloy with hardness between 41.5 and 42.5 HRC. The nickel base alloy used consists essentially of the following components: 56.5% Ni, 22.5% Cr, 2,2% Ti, 0,04% C, 1,2% Al, 0.85% Nb and the rest of iron. Through the turning of this alloy we able to analyze the working mechanisms of wear on tools and evaluate the roughness provided on the cutting parameters used. The tests were performed on a CNC lathe machine using the coated carbide tool TNMG 160408-23 Class 1005 (ISO S15) and uncoated tools TNMG 160408-23 Class H13A (ISO S15). Cutting fluid was used so abundantly and cutting speeds were fixed in 75 and 90 m/min. to feed rates that ranged from 0.12, 0.15, 0.18 and 0.21 mm/rev, and cutting depth of 0.8mm. The results of the comparison between uncoated tools and coated ones presented a machined length of just 30% to the first in relation to the performance of the second. The coated tools has obtained its best result for both 75 and 90 m/min. with feed rate of 0.15 mm/rev, unlike the uncoated tool which obtained its better results to 0.12 mm/rev.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Alguns parâmetros operaciona is do bico rotativo Micromax para apli cação do herbi cida glypho sate foram estudados em condições de laboratório. O bico Micromax a 1.600 rpm e vazão de 0,96 //min forneceu gotas com vmd de 280 μm e à vazão de 0,43 i/min , de 232 μm, sendo que em ambas as condições o coeficient e de dispersão (r = vmd/nmd) foi inferior a 1,4, atendendo, portanto, às especificações para o processo CDA. A distância entre bicos a serem montadas numa barra foi determinada em mesa de estudo do padrão de deposição foi de 1,80 m para a vazão de 0,96 Z/min e concentração da formulação comercial do glyphosate entre 4% e 6%. Essa distancia foi de 1,40 m para vazão de 0,43 1/min e concentração de glyphosate entre 9% e 13%. Distancias fora dessas especificações produziram deposições bastante irregulares sob a barra de pulverização.
Resumo:
Foi estudada a viabilidade de utilização da pulverização CDA 25C, na aplicação do herbicida em pré-emergência na cultura do arroz de sequeiro. O herbicida empregado foi o pendimethalin nas doses de 0,0; 1,5; 2,0; 2,5 e 3,0 litro s/ha da formulação comercial a 50%. A pulverização convencional foi efetuada com bicos 11003 com consumo de 200 litros de calda per hectare. O processo CDA 250 foi aplicado por meio de bico rotativo (Micromax) com dois níveis de consumo de calda : 50 1/ha e 27 1/ha. Os resultados mostraram que: a) - o método CDA 250 proporciona controle dc mato e produtividade de arroz equivalentes ao método convencional; b) para o bico Micromax, a aplicação da formulação comercial de pendimethalin a 50% com vazão de 0,48 1/min./bico, a distância entre bicos deve ser de 1,75 m e para a vazão de 0,96 1/min./bloco, essa distancia deve ser de 1,90 m; c)- a aplicação do pendimethalin 50% C.E. pelo processo CDA 250, empregando 27 litros de calda por hectare foi o processo mais interessante por oferecer vantagens logísticas apreciáveis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cephalosporin C production process optimization was studied based on four experiments carried out in an agitated and aerated tank fermenter operated as a fed-batch reactor. The microorganism Cephalosporium acremonium ATCC 48272 (C-10) was cultivated in a synthetic medium containing glucose as major carbon and energy source. The additional medium contained a hydrolyzed sucrose solution as the main carbon and energy source and it was added after the glucose depletion. By manipulating the supplementary feed rate, it was possible to increase antibiotic production. A mathematical model to represent the fed-batch production process was developed. It was observed that the model was applicable under different operation conditions, showing that optimization studies can be made based on this model. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is generated, principally in three areas: the shear zone, rake face and at the clearance side of the cutting edge. Excessive heat will cause undesirable high temperature in the tool which leads to softening of the tool and its accelerated wear and breakage. Nowadays the advanced ceramics are widely used in cutting tools. In this paper a composition special of Si3N4 was sintering, characterized, cut and ground to make SNGN120408 and applyed in machining gray cast iron with hardness equal 205 HB in dry cutting conditions by using digital controlled computer lathe. The tool performance was analysed in function of cutting forces, flank wear, temperature and roughness. Therefore metal removing process is carried out for three different cutting speeds (300 m/min, 600 m/min, and 800 m/min), while a cutting depth of 1 mm and a feed rate of 0.33 mm/rev are kept constant. As a result of the experiments, the lowest main cutting force, which depends on cutting speed, is obtained as 264 N at 600 m/min while the highest main cutting force is recorded as 294 N at 300 m/min.
Resumo:
Silicon nitride cutting tools have been used successfully for machining hard materials, like: cast irons, nickel based alloys, etc. However these cutting tools with diamond coating present little information on dry turning operations of gray cast iron. In the present work, Si3N4 square inserts was developed, characterized and subsequently coated with diamond for dry machining operations on gray cast iron. All experiments were conducted with replica. It was used a 1500, 3000, 4500 m cutting length, feed rate of 0.33 mm/rev and keeping the depth of cut constant and equal to 1 mm. The results show that wear in the tool tips of the Si3N4 inserts, in all cutting conditions, was caused by both mechanical and chemical processes. To understand the tool wear mechanisms, a morphological analysis of the inserts, after experiments, has been performed by SEM and optical microscopy. Diamond coated PVD inserts showed to be capable to reach large cutting lengths when machining gray cast iron. © (2010) Trans Tech Publications.
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)