272 resultados para FLUORIDE GLASSES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deactivation of the two lowest excited states of Ho3+ was investigated in Ho3+ singly doped and Ho3+, Pr3+-codoped fluoride (ZBLAN) glasses. We establish that 0.1-0.3 mol % Pr3+ can efficiently deactivate the first excited (I-5(7)) state of Ho3+ while causing a small reduction of similar to 40% of the initial population of the second excited (I-5(6)) state. The net effect introduced by the Pr3+ ion deactivation of the Ho3+ ion is the fast recovery of the ground state of Ho3+. The Burshstein model parameters relevant to the Ho3+-> Pr3+ energy transfer processes were determined using a least squares fit to the measured luminescence decay. The energy transfer upconversion and cross relaxation parameters for 1948, 1151, and 532 nm excitations of singly Ho3+-doped ZBLAN were determined. Using the energy transfer rate parameters we determine from the measured luminescence, a rate equation model for 650 nm excitation of Ho3+-doped and Ho3+, Pr3+-doped ZBLAN glasses was developed. The rate equations were solved numerically and the population inversion between the I-5(6) and the I-5(7) excited states of Ho3+ was calculated to examine the beneficial effects on the gain associated with Pr3+ codoping. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature and frequency dependence of the F-19 nuclear spin relaxation of the fluoroindate glass, 40InF(3)-20ZnF(2)- 20SrF(2)-2GaF(3)-2NaF-16BaF(2) and the fluorozirconate glass, 50ZrF(4)-20BaF(2)-21LiF-5LaF(3)-4AlF(3); are reported. Measurements were undertaken on pure and Gd3+ doped samples, in the temperature range of 185-1000 K, covering the region below and above the glass transition temperature, T-g. The temperature and frequency dependence of the spin-lattice relaxation rate, T-1(-1), measured in the glassy state at temperature <300 K, is less than the observed dependence at higher temperatures. At temperatures >T-g, the fluorine mobility increases, leading to a more efficient spins lattice relaxation process. Activation energies, for F- motion, are 0.8 eV for the fluoroindate glass and 1 eV for the fluorozirconate glass. The addition of Gd3+ paramagnetic impurities;at 0.1-wt%, does not alter the temperature and frequency dependence of T-1(-1), but increases its magnitude more than one order of magnitude. At temperatures <400 K, the spin-spin relaxation time, T-2(-1), measured for all samples, is determined by the rigid-lattice nuclear dipole-dipole coupling, and it is temperature independent within the accuracy of the measurements. Results obtained for the pure glass, at temperatures >400 K, show that T-2(-1) decreases monotonically as the temperature increases. This decrease is explained as a consequence of the motional narrowing effect caused by the onset of the diffusive motion of the F- ions, with an activation energy around 0.8 eV. For the doped samples, the hyperfine interaction with the paramagnetic impurities is most effective in the relaxation of the nuclear spin, causing an increase in the T(2)(-1)s observed at temperatures >600 K. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xerogels were prepared from zirconium, barium, aluminum, lanthanum and lithium acetates, corresponding to a Li containing ZBLA composition. The study of their thermal properties (DSC, TG/DTG, FT-IR) showed that they might be used as chemically stable precursors in the preparation of fluoride glasses. Hydrofluoric acid in solution was chosen as a mild fluorinating agent. This newly proposed technique of fluorinating allowed to obtain high quality ZBLALi glass which presents the advantage of higher thermal stability and homogeneity in comparison with the glass obtained using individual commercial fluorides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to improve the chemical resistance of zirconium fluoride glass a protective transparent SnO2 layer was deposited by the solgel dip-coating process in the presence of Tiron (R) as particle surface modifier agent. After water immersion for different periods of time, both coated and non-coated fluoride glasses were analyzed by scanning electron microscopy, mass loss evaluation, infrared spectroscopy and X-ray photoelectron spectroscopy. In contrast to the effects occurring for non-coated glass, where the surface undergoes a rapid selective dissolution of the most soluble species, the results for the SnO2-coated glass showed that the filling of the film nanopores by dissolved glass material results in a hermetic barrier protecting the glass surface. The selective glass dissolution was confirmed by liquid chromatography measurements of the etching solution after each exposure time. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extended X-ray absorption fine spectroscopy (EXAFS) and Raman scattering studies of InF3-BaF2 and InF3-SrF2 binary glasses are reported. For all compositions, the local structure of the glasses is built with InF6 units. For all glasses studied, the indium neighbour's number and the In-F mean bond length are equal to the values of the InF3 crystalline phase (6 and 0.205 nm, respectively). © 1996 Chapman & Hall.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Their extended transparency in the IR makes them attractive for use as optical fibers for CO laser power delivery and optical amplification. This paper firstly describes the spectacular stabilizing effect of MgF2 on the binary system InF3-BaF2. The investigation of the InF3-BaF2-MgF2 system led to samples up to 5mm in thickness. Further optimization of this system was achieved by incorporation of limited amounts of other fluorides and resulted in increased resistence to devitrification. The second approach of this work was concerned to the investigation of the pseudo-ternary system InF3-GdF3-GaF3 at constant concentrations of ZnF2-SrF2-BaF2-NaF. Several compositions were studied in this system. The samples presented a better thermal stability when compared to other families of fluoride glasses. Therefore, these glasses seem to be very promising for the fabrication of special optical fibers. Thermal data are reported.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, glasses in the systems In-Ba-Mg and In-Ba-Zn-Sr-Mg were water leachead at 80ºC showing surface degradation after 72 hours of leaching. The extent of such degradation is determined by the solubility and the concentration of the elemental fluorides that constitute the glasses. The formation of a layer of crystallized phases on the surface of the samples was observed. Small weight losses were registered and the absence of water on the glass matrix after the attack suggested that the use of MgF2 in the systems studied can lead to better results against moisture corrosion when compared to other fluoride glasses such as the fluorozirconates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Viscosity of fluoride glasses is generally Arrhenian between glass transition temperature and crystallization temperature. This dependence on temperature is not observed in some special compositions which have two regions with different activation energies. The viscosity of glasses 40InF(3)-20ZnF(2)-25BaF(2)-10SrF(2)-5LiCl and 40InF(3)-20ZnF(2)-15SrF(2)-20BaF(2)-5NaCl was obtained by the parallel plate method. A theoretical model has been proposed to explain the viscosity data. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluoride glasses have been extensively studied due to their high transparency in the infrared wavelength. The crystallization kinetics of these systems has been studied using DTA and DSC techniques. Most of the experimental data is frequently investigated in terms of the Johnson-Mehl-Avrami (JMA) model in order to obtain kinetic parameters.In this work, DSC technique has been used to study the crystallization of fluorozirconate glass under non-isothermal conditions. It was found that JMA model was not fit to be applied directly to these systems, therefore, the method proposed by Malek has been applied and the Sestak-Berggren (SB) model seems to be adequate to describe the crystallization process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In rare earth ion doped solids, a resonant non-linear refractive index, n2, appears when the laser pumps one of the ion excited states and the refractive index change is proportional to the excited state population. In these solids there are usually thermal and non-thermal lensing effects, where the non-thermal one is due to the polarizability difference, Δα, between excited and ground states of the ions. We have used the time resolved Z-scan and a mode-mismatched thermal lens technique with an Ar+ ion laser in Er+3 (20ZnF2-20SrF2-2NaF-16BaF2-6GaF3-(36 - x)InF3-xErF3, with x= 1, 2, 3 and 4 mol%) and Nd+3 (20SrF2-16BaF2-20ZnF2-2GdF3-2NaF-(40 - x)InF3-xNdF3, with x = 0.1, 0.25, 0.5-1 mol%) doped fluoroindate glasses. In both samples we found that the non-linear refraction is due to the thermal effect, while the non-thermal effect is negligible. This result indicates that in fluoride glasses Δα is very small (less than 10-26 cm3). We also measured the imaginary part of the non-linear refractive index (n″2) due to absorption saturation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Results on thermal and optical characterization of new lanthanide containing fluoroindate glasses in the system InF3-BaF2-In(PO3)3 are presented. Good optical quality and very stable glasses presenting up to 5 mm in thickness could be prepared in this system. Thermal analysis, Raman scattering and Eu3+ luminescence were the techniques utilized. A novel method for In(PO3)3 synthesis is proposed and the dependence of physical properties and structural features on the polyphosphate content is stressed. © 1998 Elsevier Science S.A.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Samples with a composition of 40InF 3-20ZnF 2-5MCl- xBaF 2-ySrF 2, where M=Na, Li and x+y=35 mol%, were prepared. The thermal properties related to the Ba/Sr ratio and to the remaining chlorine content in the glasses were studied. Thermal stability is improved with the addition of chlorine. However, chlorine concentration is regulated by the sublimation of indium fluorides which takes place at about 600°C. Indium fluorides arc formed during glass fusion. The mechanisms of chlorine sublimation were studied. © 2005 Akadémiai Kiadó, Budapest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To obtain SnO2 films to be used for surface protection of fluoride glasses, a non-aqueous sol-gel route for the preparation was developed. An ethanolic SnO2 colloidal suspension was prepared by thermohydrolysis of SnCl4 solution at 70 degreesC. By using this procedure, redispersable powders with nanometer sized particles were obtained. Films were obtained by dip coating on glass and mica substrates. The structures of the ethanolic precursor suspension and films were compared to those of similar samples prepared by the classical aqueous sol-gel route. Comparative analyses performed by photon correlation spectroscopy demonstrated that the powders obtained by freeze-drying are fully redispersable either in aqueous or in alcoholic solutions at pH greater than or equal to 8. As prepared sols and redispersed colloidal suspensions have hydrodynamic radius distribution (2-14 nm) with an average size close to 7 nm. The variations in film structures with firing temperature were investigated by small-angle X-ray scattering and X-ray reflectometry. The experimental results show that the films have a two level porous structure composed of agglomerates of primary colloidal particles. The sintering of the primary particles leads to the densification of agglomerates and to the formation of inter-agglomerate spatially correlated pores. The volume fraction of intra-agglomerate pores is reduced from approximate to 50% to approximate to 30% by the precipitation of precursor salts partially hydrolyzed in ethanolic solution. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mn(II) doped SnO2 thin films used for shielding fluoride glasses against corrosion were investigated by x-ray absorption spectroscopy (EXAFS and XANE)S at the Sn and Mn K-edges. The effect of firing treatment on the densification of the films was studied. It has been evidenced a partial change of Mn valence from 2.3 to 2.6 upon heating which is attributed to a change of ratios of two Mn sites: grafted divalent Mn ions at the surface of SnO 2 nanocrystallites and trivalent Mn ions embedded into a substitutional solid solution with Sn. © Physica Scripta 2005.