263 resultados para FINITE TEMPERATURE FIELD THEORY
Resumo:
We construct the finite temperature field theory of the two-dimensional ghost-antighost system within the framework of thermo field theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We discuss the matching of the BPS part of the spectrum for a (super) membrane, which gives the possibility of getting the membrane's results via string calculations. In the small coupling limit of M theory the entropy of the system coincides with the standard entropy of type IIB string theory (including the logarithmic correction term). The thermodynamic behavior at a large coupling constant is computed by considering M theory on a manifold with a topology T-2 x R-9. We argue that the finite temperature partition functions (brane Laurent series for p not equal 1) associated with the BPS p-brane spectrum can be analytically continued to well-defined functionals. It means that a finite temperature can be introduced in brane theory, which behaves like finite temperature field theory. In the limit p --> 0 (point particle limit) it gives rise to the standard behavior of thermodynamic quantities.
Resumo:
In this Letter we discuss a generalization for the thermal Bogoliubov transformation in the context of a Hermitian general SU(1,1) transformation generator. The TFD tilde conjugation rules are redefined using an appropriated Tomita-Takesaki modular operator. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We discuss the phi(6) theory defined in D=2+1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of the composite operator (Cornwall, Jackiw, and Tomboulis) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
We discuss the phi(6) theory defined in D = 2 + 1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of composite operator (CJT) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
In this paper, a real-time formulation of light-cone pp-wave string field theory at finite temperature is presented. This is achieved by developing the thermo field dynamics (TFD) formalism in a second quantized string scenario. The equilibrium thermodynamic quantities for a pp-wave ideal string gas are derived directly from expectation values on the second quantized string thermal vacuum. Also, we derive the real-time thermal pp-wave closed string propagator. In the flat space limit it is shown that this propagator can be written in terms of Theta functions, exactly as the zero temperature one. At the end, we show how superstrings interactions can be introduced, making this approach suitable to study the BMN dictionary at finite temperature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T not equal0 for bosonic open strings with a constant gauge field F-ab coupled to the boundary. The construction is done in the framework of ther-mo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states have the interpretation of Dp-branes at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a Dp-brane state is computed and analyzed. It is interpreted as the entropy of the Dp-brane at finite temperature.
Resumo:
We discuss the problem of the breakdown of conformal and gauge symmetries at finite temperature in curved-spacetime background, when the changes in the background are gradual, in order to have a well-defined quantum field theory at finite temperature. We obtain the expressions for Seeley's coefficients and the heat-kernel expansion in this regime. As applications, we consider the self-interacting lambdaphi4 and chiral Schwinger models in curved backgrounds at finite temperature.
Resumo:
We study an exactly solvable two-dimensional model which mimics the basic features of the standard model. This model combines chiral coupling with an infrared behavior which resembles low energy QCD. This is done by adding a Podolsky higher-order derivative term in the gauge field to the Lagrangian of the usual chiral Schwinger model. We adopt a finite temperature regularization procedure in order to calculate the non-trivial fermionic Jacobian and obtain the photon and fermion propagators, first at zero temperature and then at finite temperature in the imaginary and real time formalisms. Both singular and non-singular cases, corresponding to the choice of the regularization parameter, are treated. In the nonsingular case there is a tachyonic mode as usual in a higher order derivative theory, however in the singular case there is no tachyonic excitation in the spectrum.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)