98 resultados para Extrasolar planets
Resumo:
In this work, we study the stability of hypothetical satellites of extrasolar planets. Through numerical simulations of the restricted elliptic three-body problem we found the borders of the stable regions around the secondary body. From the empirical results, we derived analytical expressions of the critical semimajor axis beyond which the satellites would not remain stable. The expressions are given as a function of the eccentricities of the planet, e(P), and of the satellite, e(sat). In the case of prograde, satellites, the critical semimajor axis, in the units of Hill's radius, is given by a(E) approximate to 0.4895 (1.0000 - 1.0305e(P) - 0.2738e(sat)). In the case of retrograde satellites, it is given by a(E) approximate to 0.9309 (1.0000 - 1.0764e(P) - 0.9812e(sat)). We also computed the satellite stability region (a(E)) for a set of extrasolar planets. The results indicate that extrasolar planets in the habitable zone could harbour the Earth-like satellites.
Resumo:
This paper considers the dynamics of two planets, as the planets B and C of the pulsar PSR B1257+12, near a 3/2 mean-motion resonance. A two-degrees-of-freedom model, in the framework of the general three-body planar problem, is used and the solutions are analyzed through surfaces of section and Fourier techniques in the full phase space of the system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aims.We investigate the dynamics of pebbles immersed in a gas disk interacting with a planet on an eccentric orbit. The model has a prescribed gap in the disk around the location of the planetary orbit, as is expected for a giant planet with a mass in the range of 0.1-1 Jupiter masses. The pebbles with sizes in the range of 1 cm to 3 m are placed in a ring outside of the giant planet orbit at distances between 10 and 30 planetary Hill radii. The process of the accumulation of pebbles closer to the gap edge, its possible implication for the planetary accretion, and the importance of the mass and the eccentricity of the planet in this process are the motivations behind the present contribution. Methods. We used the Bulirsch-Stoer numerical algorithm, which is computationally consistent for close approaches, to integrate the Newtonian equations of the planar (2D), elliptical restricted three-body problem. The angular velocity of the gas disk was determined by the appropriate balance between the gravity, centrifugal, and pressure forces, such that it is sub-Keplerian in regions with a negative radial pressure gradient and super-Keplerian where the radial pressure gradient is positive. Results. The results show that there are no trappings in the 1:1 resonance around the L 4 and L5 Lagrangian points for very low planetary eccentricities (e2 < 0.07). The trappings in exterior resonances, in the majority of cases, are because the angular velocity of the disk is super-Keplerian in the gap disk outside of the planetary orbit and because the inward drift is stopped. Furthermore, the semi-major axis location of such trappings depends on the gas pressure profile of the gap (depth) and is a = 1.2 for a planet of 1 MJ. A planet on an eccentric orbit interacts with the pebble layer formed by these resonances. Collisions occur and become important for planetary eccentricity near the present value of Jupiter (e 2 = 0.05). The maximum rate of the collisions onto a planet of 0.1 MJ occurs when the pebble size is 37.5 cm ≤ s < 75 cm; for a planet with the mass of Jupiter, it is15 cm ≤ s < 30 cm. The accretion stops when the pebble size is less than 2 cm and the gas drag dominates the motion. © 2013 ESO.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
In this paper were studied regions close to the Roche lobe of a planet like Jupiter, in order to find regions with low velocities. We simulated a two dimensional and non-self-gravitating disk, where tidal and viscous torques are considered, using the hydrodynamic numerical integrator FARGO 2D. As stated earlier we are interested in find low velocities regions for in future works study the possibility of satellites formation in these regions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the absence of the selective availability, which was turned off on May 1, 2000, the ionosphere can be the largest source of error in GPS positioning and navigation. Its effects on GPS observable cause a code delays and phase advances. The magnitude of this error is affected by the local time of the day, season, solar cycle, geographical location of the receiver and Earth's magnetic field. As it is well known, the ionosphere is the main drawback for high accuracy positioning, when using single frequency receivers, either for point positioning or relative positioning of medium and long baselines. The ionosphere effects were investigated in the determination of point positioning and relative positioning using single frequency data. A model represented by a Fourier series type was implemented and the parameters were estimated from data collected at the active stations of RBMC (Brazilian Network for Continuous Monitoring of GPS satellites). The data input were the pseudorange observables filtered by the carrier phase. Quality control was implemented in order to analyse the adjustment and to validate the significance of the estimated parameters. Experiments were carried out in the equatorial region, using data collected from dual frequency receivers. In order to validate the model, the estimated values were compared with ground truth. For point and relative positioning of baselines of approximately 100 km, the values of the discrepancies indicated an error reduction better than 80% and 50% respectively, compared to the processing without the ionospheric model. These results give an indication that more research has to be done in order to provide support to the L1 GPS users in the Equatorial region.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work generates, through a sample of numerical simulations of the restricted three-body problem, diagrams of semimajor axis and eccentricity which defines stable and unstable zones for particles in S-type orbits around Pluto and Charon. Since we consider initial conditions with 0 <= e <= 0.99, we found several new stable regions. We also identified the nature of each one of these newly found stable regions. They are all associated to families of periodic orbits derived from the planar circular restricted three-body problem. We have shown that a possible eccentricity of the Pluto-Charon system slightly reduces, but does not destroy, any of the stable regions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)