205 resultados para Experimental Analysis of Behavior
Resumo:
This work considers a problem of interest in several technological applications such as the thermal control of electronic equipment. It is also important to study the heat transfer performance of these components under off-normal conditions, such as during failure of cooling fans. The effect of natural convection on the flow and heat transfer in a cavity with two flush mounted heat sources on the left vertical wall, simulating electronic components, is studied numerically and experimentally. The influence of the power distribution, spacing between the heat sources and cavity aspect ratio have been investigated. An analysis of the average Nusselt number of the two heat sources was performed to investigate the behavior of the heat transfer coefficients. The results obtained numerically and experimentally, after an error analysis, showed a good agreement.
Resumo:
This work present a study of glulam beams reinforced with FRP. It was developed a theoretical model that calculates strength and stiffness of the beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.
Resumo:
The intent of this paper is to present contributions focused on the analysis and development of harmonic attenuator devices. Among these, highlights here the so-called electromagnetic zero-sequence suppressor. This arrangement consists of a filter and a blocker, both electromagnetic, whose combined operation provides paths for low and high impedance, respectively, which can be conveniently adjusted to the desired performance. In this context, here are present results related to experimental studies that show the behavior of the equipment in front of different operating conditions. The tests were performed on a low-power prototype (1kVA/220V) and the analysis results show the main motivator aspects for the use of these devices. © 2012 IEEE.
Resumo:
This paper shows the results of experimental investigations of three-phase banks composed of single-phase transformers and three-phase three-limb core transformers under simultaneous alternating and direct current excitations, for several winding connections. Harmonic analysis of excitation currents for different de saturation levels is performed.
Resumo:
In this work, an analysis of the natural convection flow caused by heat sources dissipating energy at a constant rate simulating electronic components mounted at the bottom surface of a cavity symmetrically cooled from the sides and insulated at the top is performed. This problem was studied numerically and experimentally for several aspect ratios (height/width), for different levels of dissipation in the sources, and for different side wall temperatures. Temperature and velocity fields were determined as well as the temperature variation along the surface where the sources are mounted and the average Nusselt number in the source surfaces. Numerical and experimental results were found to agree.
Resumo:
Heat recovery devices are important in the optimization of thermal systems, since they can be used to reduce thermal losses to the environment. The use of heat pipes in these types of equipment can provide heat recoveries of higher efficiency, since both fluid flows are external and there are less contamination risks between the hot and cold fluids. The objective of this work is to study a heat recovery unit constructed with heat pipes and mainly, to analyze the influence of the inclination of the heat pipes on the performance of the equipment. For this analysis, a heat recovery unit was constructed which possesses 48 finned heat pipes in triangular geometry, the evaporator and condenser being of the same length. This unit was tested in an air-air system simulating a heat recovery process in which heat was supplied to the hot fluid by electrical resistances. The results have shown that there exists an inclination at which the system has a better performance, but for higher inclinations there is no significant increase of the efficiency of the system. This paper also presents the influence of inclination of heat pipes on effectiveness and NTU parameters which are important in heat exchanger design.
Resumo:
Cold-formed steel shapes have been widely employed in steel construction, where they frequently offer a lower cost solution than do traditional laminated shapes. A classic application of cold-formed steel shapes is purlins in the roof panel of industrial buildings, connected to the roof panel by means of screws. The combined effect of these two elements has been the subject of investigations in some countries. Design criteria were included in the AISI Code in 1991 and 1996. This paper presents and discusses the results obtained from bending tests carried out on shapes commonly used in Brazil, i.e., the channel and the simple lipped channel, Tests were carried out on double shapes with 4.5 and 6.0 meter spans, which were subjected to concentrated loads and braced against each other on the supports and at intermediary points in three different load situations. The panel shape was also analyzed experimentally, simulating the action of wind by means of a vacuum box designed specifically for this purpose. The test results were then compared to those obtained through the theoretical analysis, enabling us to extract important information upon which to base proposed design criteria for the new Brazilian code.
Resumo:
Heat-transfer studies were carried out in a packed bed of glass beads, cooled by the wall, through which air percolated. Tube-to-particle diameter ratios (D/dp) ranged from 1.8 to 55, while the air mass flux ranged from 0.204 to 2.422 kg/m2·s. The outlet bed temperature (TL) was measured by a brass ring-shaped sensor and by aligned thermocouples. The resulting radial temperature profiles differed statistically. Angular temperature fluctuations were observed through measurements made at 72 angular positions. These fluctuations do not follow a normal distribution around the mean for low ratios D/dp. The presence of a restraining screen, as well as the increasing distance between the temperature measuring device and the bed surface, distorts TL. The radial temperature profile at the bed entrance (T0) was measured by a ring-shaped sensor, and T 0 showed to be a function of the radial position, the particle diameter, and the fluid flow rate.
Resumo:
The structural health monitoring (SHM) systems based on electromechanical (E/M) impedance technique have been widely investigated. Although many studies indicate the reliability of this technique, some practical considerations still have to be considered in real applications. This paper presents an experimental analysis of the effect of the structure area on the system's performance. The results indicate that the sensitivity of the system to detect damage decreases significantly when the host structure has large cross-section area. Copyright © 2009 by ASME.
Resumo:
This paper presents a computational fluid dynamics (CFD) application about the axial fan design used in an agricultural spraying system with a theoretical and experimental analysis of comparative results between the characteristic curves of a fan for several rotations and numerical results for the influence of blade attack angle variation and optimization of the spraying system, both for a same rotation. Flow was considered three-dimensional, turbulent, isothermal, viscous and non-compressible in a steady state, disregarding any influence of the gravity field. The average turbulent field was obtained from the application of time average where the turbulence model required for closing the set of equations was the k-E model. Resolution of all connected phenomena was achieved with the help of a fluid dynamics computer, CFX, which uses the finite volumes technique as a numerical method. In order to validate the theoretical analysis, an experiment was conducted in a circular section of a horizontal wind tunnel, using a Pitot tube for pressure readings. The main results demonstrate that the methodology used, based on CFD techniques, is able to reproduce the phenomenological behavior of an axial fan in a spraying system because results were very reliable and similar to experimentally measured ones.
Resumo:
Piezoelectric transducers are widely used in high-resolution positioning systems. This paper reports the experimental analysis of a novel piezoelectric flextensional actuator (PFA), which is designed by using the topology-optimization method through a low-cost homodyne Michelson interferometer. By applying the J(1) - J(4) method for signal demodulation, which provides a linear and direct measurement of dynamic optical phase shift independent of fading, the nanometric displacements of the PFA were determined. Linearity and frequency response of the PFA were evaluated up to 50 kHz. PFA calibration factor and amplification rate were determined for the PFA operating in the quasi-static regime. To confirm the observed frequencies of resonance, an impedance analyzer is also utilized to measure the magnitude and phase of the PFA admittance.
Resumo:
This four-experiment series sought to evaluate the potential of children with neurosensory deafness and cochlear implants to exhibit auditory-visual and visual-visual stimulus equivalence relations within a matching-to-sample format. Twelve children who became deaf prior to acquiring language (prelingual) and four who became deaf afterwards (postlingual) were studied. All children learned auditory-visual conditional discriminations and nearly all showed emergent equivalence relations. Naming tests, conducted with a subset of the: children, showed no consistent relationship to the equivalence-test outcomes.. This study makes several contributions: to the literature on stimulus equivalence. First; it demonstrates that both pre- and postlingually deaf children-can: acquire auditory-visual equivalence-relations after cochlear implantation, thus demonstrating symbolic functioning. Second, it directs attention to a population that may be especially interesting for researchers seeking to analyze the relationship. between speaker and listener repertoires. Third, it demonstrates the feasibility of conducting experimental studies of stimulus control processes within the limitations of a hospital, which these children must visit routinely for the maintenance of their cochlear implants.
Resumo:
An excitation force that is not influenced by the system state is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist at a certain level. This manifestation of the law of conservation of energy is known as the Sommerfeld effect. In the case of obtaining a mathematical model for such a system, additional equations are usually necessary to describe the vibration sources with limited power and its coupling with the mechanical system. In this work, a cantilever beam and a non-ideal DC motor fixed to its free end are analyzed. The motor has an unbalanced mass that provides excitation to the system which is proportional to the current applied to the motor. During the coast up operation of the motor, if the drive power is increased slowly, making the excitation frequency pass through the first natural frequency of the beam, the DC motor speed will remain the same until it suddenly jumps to a much higher value (simultaneously its amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in the Sommerfeld effect. Numerical simulations and experimental tests are used to help gather insight of this dynamic behavior. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. (C) 2011 Elsevier Ltd. All rights reserved.