136 resultados para EPITAXIAL CRYSTALLIZATION
Resumo:
Oriented LiNbO3 thin films were prepared using a polymeric precursor solution deposited on (0001) sapphire substrate by spin coating and crystallized in a microwave oven. Crystallization of the films was carried out in a domestic microwave oven. The influence of this type of heat treatment on the film orientation was analyzed by X-ray diffraction and electron channeling patterns, which revealed epitaxial growth of films crystallized at 550 and 650 degreesC for 10 min. A microstructural study indicated that the films treated at temperatures below 600 degreesC were homogeneous and dense, and the optical properties confirmed the good quality of these films. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Haemoglobins constitute a set of proteins with interesting structural and functional properties, especially when the two large animal groups reptiles and fishes are focused on. Here, the crystallization and preliminary X-ray analysis of haemoglobin-II from the South American fish matrinxa (Brycon cephalus) is reported. X-ray diffraction data have been collected to 3.0 Angstrom resolution using synchrotron radiation (LNLS). Crystals were determined to belong to space group P2(1) and preliminary structural analysis revealed the presence of two tetramers in the asymmetric unit. The structure was determined using the standard molecular-replacement technique.
Resumo:
Mastoparans are tetradecapeptides found to be the major component of vespid venoms. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized and X-ray diffraction data collected to 2.7 Angstrom resolution using a synchrotron-radiation source. Crystals were determined to belong to the space group P6(2)22 (P6(4)22). This is the first mastoparan to be crystallized and will provide further insights into the conformational significance of mastoparan toxins with respect to their potency and activity in G-protein regulation.
Resumo:
The venom of Crotalus durissus terrificus snakes presents various substances, including a serine protease with thrombin-like activity, called gyroxin, that clots plasmatic fibrinogen and promote the fibrin formation. The aim of this study was to purify and structurally characterize the gyroxin enzyme from Crotalus durissus terrificus venom. For isolation and purification, the following methods were employed: gel filtration on Sephadex G75 column and affinity chromatography on benzamidine Sepharose 6B; 12% SDS-PAGE under reducing conditions; N-terminal sequence analysis; cDNA cloning and expression through RT-PCR and crystallization tests. Theoretical molecular modeling was performed using bioinformatics tools based on comparative analysis of other serine proteases deposited in the NCBI (National Center for Biotechnology Information) database. Protein N-terminal sequencing produced a single chain with a molecular mass of similar to 30 kDa while its full-length cDNA had 714 bp which encoded a mature protein containing 238 amino acids. Crystals were obtained from the solutions 2 and 5 of the Crystal Screen Kit (R), two and one respectively, that reveal the protein constitution of the sample. For multiple sequence alignments of gyroxin-like B2.1 with six other serine proteases obtained from snake venoms (SVSPs), the preservation of cysteine residues and their main structural elements (alpha-helices, beta-barrel and loops) was indicated. The localization of the catalytic triad in His57, Asp102 and Ser198 as well as S1 and S2 specific activity sites in Thr193 and Gli215 amino acids was pointed. The area of recognition and cleavage of fibrinogen in SVSPs for modeling gyroxin B2.1 sequence was located at Arg60, Arg72, Gln75, Arg81, Arg82, Lis85, Glu86 and Lis87 residues. Theoretical modeling of gyroxin fraction generated a classical structure consisting of two alpha-helices, two beta-barrel structures, five disulfide bridges and loops in positions 37, 60, 70, 99, 148, 174 and 218. These results provided information about the functional structure of gyroxin allowing its application in the design of new drugs.
Resumo:
Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 angstrom, alpha = 63.45, beta = 80.66, gamma = 94.55 degrees. xfGST crystals diffracted to 2.23 angstrom resolution on a rotating-anode X-ray source.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this work was to investigate the effect of previous treatments at high pressures on the crystallization kinetics of monolithic samples of a Li2O-2SiO(2) (LS2) glass. The glass transition temperature (T-g) and the temperature of the onset of crystallization (T-p) obtained by differential thermal analyses (DTA) were measured for LS2 glass samples submitted to isostatic pressures ranging from 2.5 to 7.7 GPa during 5 min at room temperature. The observed systematic changes in T-g and T-p were probably related to the cracks induced by high pressure inside the monolithic samples and in its surface. Away from the cracks, the nucleation density slightly decreased as a function of pressure but along the cracks, the nucleation density was significantly higher. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work, differential scanning calorimetry (DSC) was used to study the mechanism of crystallization of 5OP(2)O(5-)27.8Na(2)O-16ZnO-6.2Al(2)O(3) glass. DSC measurements were performed on bulk and powdered glasses with different particle size. The curve for bulk glass shows one crystallization peak while powdered glasses presented two distinct crystallization peaks. Based on DSC studies, the activation energies obtained were 336 +/- 6 and 213 +/- 3 U mol(-1), associated with first and second crystallization peaks, respectively. Analyzing the DSC parameters as a function of particle size, the Avrami n parameter suggests that the peak at low temperature may be associated with surface crystallization while the peak at high temperature is associated with bulk crystallization. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this work, differential scanning calorimetry (DSC) was used to study effect of PbS impurity on crystallization mechanism of phosphate glasses. Bulk glasses presented one crystallization peak while powdered glasses presented two distinct crystallization peaks. For both undoped and doped glasses were determined the activation energies for the crystallization and the Avrami n parameters. The activation energies for undoped phosphate glass were 336 +/- 6 and 213 +/- 3 kJ mol(-1), respectively, associated with first and second crystallization peaks. For doped glass, the obtained energies were 373 +/- 9 and 286 +/- 7 kJ mol(-1). The calculated Avrami parameters, based on first crystallization peaks, for undoped and doped glasses were 2.25 +/- 0.01 and 1.75 +/- 0.02, respectively. These values suggest that the first DSC peak, in both glasses, may be associated with surface crystallization. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The purpose of this work is to study the 20Li(2)O-80TeO(2) glass using the differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques in order to understand the crystallization kinetics on this glass matrix. To study the glass by DSC, screened samples with different particle sizes to resolve the observed asymmetrical crystallization peak were used. DSC curves for particles smaller than 38 mum in size show two distinct crystallization peaks, associated to distinct phase transformation in this glass, leading to activation energies at 301 and 488 kJ mol(-1). XRD analysis reveals that the first crystallization peak is attributed to TeO2 crystalline phase while the second one to the alpha-TeO3 and an unidentified phase.(C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper reports studies on dielectric and ferroelectric properties of lead zirconate titanate (PZT) thin films crystallized by conventional thermal annealing (CTA) and rapid thermal annealing (RTA) in air, oxygen and nitrogen atmospheres to better understand, control and optimize these properties. The dielectric constant (epsilon) and dissipation factor (tan delta) values, at a frequency of 100 kHz; for film crystallized in air by CTA process, were 358 and 0.039, respectively. Considering the same frequency for film crystallized in air by RTA, these values were 611 and 0.026, respectively. The different dielectric values were justified by a space-charge or interfacial polarization in films, often characterized as Maxwell-Wagner type. This effect was also responsible to dispersion at frequencies above 1 MHz in film crystallized in air by CTA process and film crystallized by RTA in oxygen atmosphere. The film crystallized by RTA under nitrogen atmosphere presented an evident dispersion at frequencies around 100 Hz, characterized by an increase in both epsilon and tan delta. This dispersion was attributed to conductivity effects. The remanent polarization (P-r) and coercive field (E-c) were also obtained for all films. Films obtained from RTA in air presented higher P-r (17.8 muC cm(-2)) than film crystallized from CTA (7.8 muC cm(-2)). As a function of the crystallization atmospheres, films crystallized by RTA in air and nitrogen presented essentially the same P-r values (around 18 muC cm(-2)) but the P-r (3.9 muC cm(-2)) obtained from film crystallized under oxygen atmosphere was profoundly influenced.