33 resultados para ENERGY BUDGET MODEL
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a mathematical model for helping mills choose sugarcane varieties for planting. It maximizes crop residual biomass energy balance by considering the difference between generated and consumed energy in the process of transferring this biomass from the field to the processing center; it takes into account enterprise demand restrictions and cane planting area. For this full zero-one linear programming techniques were proposed. The model is viable for choosing sugarcane varieties that would benefit sugarcane production and industrial systems, by reducing crop residue and increasing final energy production. (c) 2006 Published by Elsevier Ltd.
Resumo:
Protein-energy malnutrition is a syndrome in which anaemia together with multivitamin and mineral deficiency may be present. The pathophysiological mechanisms involved have not, however, yet been completely elucidated. The aim of the present study was to evaluate the pathophysiological processes that occur in this anaemia in animals that were submitted to protein-energy malnutrition, in particular with respect to Fe concentration and the proliferative activity of haemopoietic cells. For this, histological, histochemical, cell culture and immunophenotyping techniques were used. Two-month-old male Swiss mice were submitted to protein-energy malnutrition with a low-protein diet (20g/kg) compared with control diet (400 g/kg). When the experimental group had attained a 20% loss of their original body weight, the animals from both groups received, intravenously, 20IU erythropoietin every other day for 14 d. Malnourished animals showed a decrease in red blood cells, Hb concentration and reticulocytopenia, as well as severe bone marrow and splenic atrophy. The results for serum Fe, total Fe-binding capacity, transferrin and erythropoietin in malnourished animals were no different from those of the control animals. Fe reserves in the spleen, liver and bone marrow were found to be greater in the malnourished animals. The mixed colony-forming unit assays revealed a smaller production of granulocyte-macrophage colony-forming units, erythroid burst-forming units, erythroid colony-forming units and CD45, CD117, CD119 and CD71 expression in the bone marrow and spleen cells of malnourished animals. These findings suggest that, in this protein-energy malnutrition model, anaemia is not caused by Fe deficiency or erythropoietin deficiency, but is a result of ineffective erythropoiesis.
Resumo:
In order to estimate the deforestation consequences on the actual solar energy budget of the Central Amazon Region, two ecosystems of different characteristics were compared. The present conditions of the region were represented by a typical 'terra firme' forest cover located at INPA's Ducke Forest Reserve, where the measurements necessary to evaluate its solar energy balance were carried out. The second ecosystem, simulating a deforested area, was represented by an area about 1.0 ha without natural vegetation and situated in the same Reserve. In this area lysimeters were placed, two of them filled with yellow latosol and two others with quartzose sand soil. Both soils are representative soils in the region. Their water balances were taken into account as well as the other parameters necessary to compute the solar energy balances. The results showed that water loss by evaporation was about 41.8% of the total precipitation in the yellow latosol lysimeters and about 26.4% for the quartzose sand ones. For the forest cover it was estimated an evapotranspiration of 67.9% of the rainfall amount. In relation to solar energy balance calculated for the forest cover, it was found that 83.1% of the total energy incoming to this ecosystem was used by the evapotranspiration process, while the remaining of 16.9% can be taken as sensible heat. For bare soils, 55.1% and 31.8% of the total energy were used as latent heat by yellow latosol and quartzose sand soils, respectively. So, the remaining amounts of 44.9% and 68.2% were related to sensible heat and available to atmospheric air heating of these ecosystems. Such results suggest that a large deforestation of the Amazon Region would have direct consequences on their water and solar radiation balances, with an expected change on the actual climatic conditions of the region. © 1993.
Resumo:
Locomotion is central to behavior and intrinsic to many fitnesscritical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from postural costs (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S males might partly explain the apparent selection limit for wheel running observed for over 15 generations. © 2009 by The University of Chicago. All rights reserved.
Resumo:
A search motivated by supersymmetric models with light top squarks is presented using proton-proton collision data recorded with the CMS detector at a center-of-mass energy of √s=7 TeV during 2011, corresponding to an integrated luminosity of 4.98 fb-1. The analysis is based on final states with a single lepton, b-quark jets, and missing transverse energy. Standard model yields are predicted from data using two different approaches. The observed event numbers are found to be compatible with these predictions. Results are interpreted in the context of the constrained minimal supersymmetric standard model and of a simplified model with four top quarks in the final state. © 2013 CERN.
Resumo:
Water vapor is an atmospheric component of major interest in atmospheric science because it affects the energy budget and plays a key role in several atmospheric processes. The Amazonian region is one of the most humid on the planet, and land use change is able to affect the hydrologic cycle in several areas and consequently to generate severe modifications in the global climate. Within this context, accessing the error associated with atmospheric humidity measurement and the validation of the integrated water vapor (IWV) quantification from different techniques is very important in this region. Using data collected during the Radiation, Cloud, and Climate Interactions in Amazonia during the Dry-to-Wet Transition Season (RACCI/DRY-TO-WET), an experiment carried out in southwestern Amazonia in 2002, this paper presents quality analysis of IWV measurements from RS80 radiosondes, a suite of GPS receivers, an Aerosol Robotic Network (AERONET) solar radiometer, and humidity sounding from the Humidity Sounder for Brazil (HSB) aboard the Aqua satellite. When compared to RS80 IWV values, the root-mean-square (RMS) from the AERONET and GPS results are of the order of 2.7 and 3.8 kg m(-2), respectively. The difference generated between IWV from the GPS receiver and RS80 during the daytime was larger than that of the nighttime period because of the combination of the influence of high ionospheric activity during the RACCI experiment and a daytime drier bias from the RS80.
Resumo:
The quality of the vertical distribution measurements of humidity in the atmosphere is very important in meteorology due to the crucial role that water vapor plays in the earth's energy budget. The radiosonde is the humidity measurement device that provides the best vertical resolution. Also, radiosondes are the operational devices that are used to measure the vertical profile of atmospheric water vapor. The World Meteorological Organization (WMO) has carried out several intercomparison experiments at different climatic zones in order to identify the differences between the available commercial sensors. This article presents the results of an experiment that was carried out in Brazil in 2001 in which major commercial radiosonde manufacturers [e.g., Graw Radiosondes GmbH & Co., KG (Germany); MODEM (France); InterMet Systems (United States); Sippican, Inc. (United States); and Vaisala (Finland)] were involved. One of the main goals of this experiment was to evaluate the performance of the different humidity sensors in a tropical region. This evaluation was performed for different atmospheric layers and distinct periods of the day. It also considers the computation of the integrated water vapor (IWV). The results showed that the humidity measurements achieved by the different sensors were quite similar in the low troposphere (the bias median value regarding the RS80 was around 1.8%) and were quite dispersed in the superior layers (the median rms regarding the RS80 was around 14.9%).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Understanding the microscopic origin of the dielectric properties of disordered materials has been a challenge for many years, especially in the case of samples with more than one phase. For polar dielectrics, for instance, the Lepienski approach has indicated that the random free energy barrier model of Dyre must be extended. Here we analyse the dielectric properties of a polymer blend made up with the semiconducting poly(o-methoxyaniline) and poly( vinylidene fluoride-trifluorethylene) POMA/P(VDF-TrFE), and of a hybrid composite of POMA/P(VDF-TrFE)/Zn2SiO4:Mn. For the blend, the Lepienski model, which takes into account the rotation or stretching of electric dipoles, provided excellent fitting to the ac impedance data. Because two phases had to be assumed for the hybrid composite, we had to extend the Lepienski model to fit the data, by incorporating a second transport mechanism. The two mechanisms were associated with the electronic transport in the polymeric matrix and with transport at the interfaces between Zn2SiO4: Mn microparticles and the polymeric matrix, with the relative importance of the interfacial component increasing with the percentage of Zn2SiO4: Mn in the composite. The analysis of impedance data at various temperatures led to a prediction of the theoretical model of a change in morphology at 190 +/- 40 K, and this was confirmed experimentally with a differential scanning calorimetry experiment.
Resumo:
In this article, we review intraspecific studies of basal metabolic rate (BMR) that address the correlation between diet quality and BMR. The food-habit hypothesis stands as one of the most striking and often-mentioned interspecific patterns to emerge from studies of endothermic energetics. Our main emphasis is the explicit empirical comparison of predictions derived from interspecific studies with data gathered from within-species studies in order to explore the mechanisms and functional significance of the putative adaptive responses encapsulated by the food-habit hypothesis. We suggest that, in addition to concentrating on the relationship among diet quality, internal morphology, and BMR, new studies should also attempt to unravel alternative mechanisms that shape the interaction between diet and BMR, such as enzymatic plasticity, and the use of energy-saving mechanisms, such as torpor. Another avenue for future study is the measurement of the effects of diet quality on other components of the energy budget, such as maximum thermogenic and sustainable metabolic rates. It is possible that the effects of diet quality operate on such components rather than directly on BMR, which might then push or pull along changes in these traits. Results from intraspecific studies suggest that the factors responsible for the association between diet and BMR at an ecological timescale might not be the same as those that promoted the evolution of this correlation. Further analyses should consider how much of a role the proximate and ultimate processes have played in the evolution of BMR.