139 resultados para Dualidade (Fisica nuclear)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Recently, research on energy harvesting has increased substantially. Many researchers have concentrated their efforts to find the best configuration for these systems and to optimize their output power. In the process of energy harvesting, the electric energy is obtained by converting mechanics energy created by an environment vibration source by a transducer, for example, a thin piezoceramic film. That vibration source is, for example, a beam suffering some mechanic force able to generate a vibration in it, an oscillating beam is the best properly used example. Different mechanisms of electromechanical coupling have been developed to harvesting devices, and a particular interest has been given to the use of models that transform the mechanical vibration into electrical current using a piezoelectric element. In this paper we propose a model to energy harvesting from vibrations, from an oscillating beam, including non-linearities in the piezoelectric coupling and a non-ideal excitation in the material. From this model, it was developed a system to obtain some results about the harvested power by the material. It was demonstrated that the power captured was influenced by the effect of the nonlinearities of the piezoelectric coupling, modifying the system dynamic behavior
Resumo:
The Boron Neutron Capture Therapy (BNCT), based on the 10B(n,α)7Li reaction, represents a promising modality for the treatment of cancers that are resistents to conventional treatments. So, it is necessary to find drugs (boron compounds) with high selectivity for each type of cancer, the neutrons source should be well characterized and the rate of 10B(n,α)7Li reaction should be measured with great accuracy as possible. This study aimed to develop a method for manufacturing thin films of boron, for measure the 10B(n,α)7Li reaction, and analyze the uniformity of the films. Five thin films of boron were manufactured with three different concentrations of boric acid, heated to transform the acid in boron, irradiated with thermic neutrons coupled to CR-39 detectors, in BNCT line at the reactor IEA-R1 IPEN/CNEN, São Paulo. After the irradiation, the detectors were chemically attacked with NaOH to reveal the tracks. The methodology presented is effective because it resulted in deposition of boron as thin film enabling the quantitative analysis of 10B(n,α)7Li reaction. The analysis of the uniformity of density of the induced tracks in CR-39 shows that, in most of the films, there is no uniformity in surface distribution of boron, but when the film is divided, we obtain some uniform sectors
Resumo:
Cosmic radiation has been identi ed as one of the main hazard to crew, aircraft and sensitive equipments involved in long-term missions and even high-altitude commercial ights. Generally, shields are used in spatial units to avoid excessive exposure, by holding the incident radiation. Unfortunatelly, shielding in space is problematic, especially when high-energy cosmic particles are considered, due to the production of large number of secondary particles, mainly neutrons, protons and alpha particles, caused by spallation reactions and quasi-elastic processes of the corpuscular radiation with the shield. Good parameters for checking the secondary particle production at target material are diferential cross section and energy deposited in the shield. Addition experiments, some computer codes based on Monte Carlo method show themselves a suitable tool to calculate shield parameters, due to have evaluated nuclear data libraries implemented on the algorithm. In view of this, the aim of this work is determining the parameters evaluated in shielding materials, by using MCNPX code, who shows good agreement with experimental data from literature. Among the materials, Aluminium had lower emission and production of secondary particles
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)