596 resultados para Dental cements
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
BIOCOMPATIBILITY TESTING OF A POSTERIOR COMPOSITE AND DENTAL CEMENTS USING A NEW ORGAN-CULTURE MODEL
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose was to evaluate the cytotoxicity of two novel formulations (alpha and beta) of calcium phosphate cements. Positive control, represented by a commercial hydroxyapatite cement, and negative control were included for comparative purposes. A continuous lineage of fibroblastic cells was used, and the effect of the tested materials on both cell proliferation and viability was assessed by counting cell number on hemocytometer and by the trypan blue exclusion test, respectively. Study design attempted to simulate clinical use by allowing direct and indirect contact of cells and cements. Results were analyzed by the Kruskal-Wallis test and indicated that the beta formulation was extremely cytotoxic (P < 0.001), because this material induced the greatest reduction on cell proliferation and viability. The alpha formulation behaved similarly to the positive control regarding its effect on cell proliferation and viability. Thus, it is concluded that alpha formulation has promise for further evaluation of its behavior in vivo.
Resumo:
It was verified the penetration of phosphoric acid into 3 commercial calcium hydroxide-based cements (Life, Renew and Prisma VLC Dycal). The colorimetric method employed permitted the identidication of phosphorus amount in representative samples of 6 successive layers 0.1 mm thick of each material. The acid etching used were the commercial products Scotchbond Etching Gel--3M at 36.114% by weight and Solução Condicionadora--Johnson & Johnson at 36.054% by weight. The contact time was 60 seconds. The result showed that layers 0.1 mm tick for Life and Prisma VLC Dycal and 0.2 mm thick for Renew were able to block the penetration of phosphoric acid solution whereas layers 0.1 mm thick for the 3 cements were able to block the penetration of phosphoric acid gel.
Resumo:
Considering several reports about the similarity between the chemical compositions of the mineral trioxide aggregate (MTA) and Portland cement (PC), the subject of this investigation was to analyze the behavior of dog dental pulp after pulpotomy and direct pulp protection with these materials. After pulpotomy, the pulp stumps of 26 roots of dog teeth were protected with MTA or PC. Sixty days after treatment, the animal was sacrificed and the specimens removed and prepared for histomorphological analysis. There was a complete tubular hard tissue bridge in almost all specimens. In conclusion, MTA and PC show similar comparative results when used in direct pulp protection after pulpotomy.
Resumo:
Background: Since only a few data have been published concerning the effects of resinous dental materials on the pulp-dentin complex, the aim of this study was to evaluate the biocompatibility of resin-based materials applied as liners in deep cavities prepared in duman teeth. Methods: After preparing class V cavities, the following dental materials were applied on the axial walls: group 1, Vitrebond™ (VIT; 3M ESPE); group 2, Ultra-Blend® Plus™ (UBP; Untradent); and group 3, Clearfil™ SE Bond (CSEB; Kuraray). In group 4 (control), the hard-setting calcium hydroxide cement Dycal (CH; Caulk/Dentsply) was used. The teeth extracted at 7 days or between 30 and 85 days after the clinical procedures were processed for histological evaluation. Results: For all the experimental and control groups, most of specimens exhibited no pulpal response or slight inflammatory reaction associated with slight tissue disorganization at 7-day period. Moderate inflammatory pulpal response occurred only in one tooth (RDT = 262 μm) of group 3 in which transdentinal diffusion of resin components was observed. Conclusion: The resin-based dental cements VIT and UBP as well as the bonding agent CSEB presented acceptable biocompatibility when applied in deep cavities prepared in sound human teeth. © 2006 Wiley Periodicals, Inc.
Resumo:
Objective: To evaluate the response of human pulps capped with a calcium hydroxide [Ca(OH)2] cement after bleeding control with 2 hemostatic agents. Method and Materials: Pulps were exposed on the occlusal floor, and the bleeding was controlled either with saline solution (SS) or 2.5% sodium hypochlorite (NaOCI) (SH). After that, the pulp was capped with Ca(OH) 2 cement and restored with resin composite. After 30 (groups SS30 and SH30) and 60 (groups SS60 and SH60) days, the teeth were extracted and processed with hematoxylin-eosin and categorized in a histologic score system. The data were subjected to Kruskal-Wallis and Mann-Whitney tests (α = .05). Results: Regarding dentin bridge formation, an inferior response of SH60 group was observed when compared to SS60 (P < .05). The response of the SH30 group generally was similar to that of the groups treated with saline solution. However, after 60 days, 2.5% NaOCl showed a trend toward having an inferior response. Conclusion: Using saline solution as a hemostatic agent before pulp capping with Ca(OH)2 resulted in a significantly better histomorphologic response than using 2.5% NaOCl as a hemostatic agent before capping with Ca(OH)2.
Resumo:
This study evaluated the cytotoxic effects of 2 mineral trioxide aggregate (MTA) cements - White-MTA-Angelus and a new formulation, MTA-Bio - on odontoblast-like cell (MDPC-23) cultures. Twenty-four disc-shaped (2 mm diameter x 2 mm thick) specimens were fabricated from each material and immersed individually in wells containing 1 mL of DMEM culture medium for either 24 h or 7 days to obtain extracts, giving rise to 4 groups of 12 specimens each: G1 - White-MTA/24 h; G2 - White-MTA/7 days; G3 - MTA-Bio/24 h; and G4 - MTA-Bio/7 days. Plain culture medium (DMEM) was used as a negative control (G5). Cells at 30,000 cells/cm 2 concentration were seeded in the wells of 24-well plates and incubated in a humidified incubator with 5% CO 2 and 95% air at 37°C for 72 h. After this period, the culture medium of each well was replaced by 1 mL of extract (or plain DMEM in the control group) and the cells were incubated for additional 2 h. Cell metabolism was evaluated by the MTT assay and the data were analyzed statistically by ANOVA and Tukey's test (α=0.05). Cell morphology and the surface of representative MTA specimens of each group were examined by scanning electron microscopy. There was no statistically significant difference (p>0.05) between G1 and G2 or between G3 and G4. No significant difference (p>0.05) was found between the experimental and control groups either. Similar cell organization and morphology were observed in all groups, regardless of the storage periods. However, the number of cells observed in the experimental groups decreased compared to the control group. MTA-Bio presented irregular surface with more porosities than White-MTA. In conclusion, White-MTA and MTA-Bio presented low cytotoxic effects on odontoblast-like cell (MDPC-23) cultures.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Glass ionomer cements (GICs) are products of the acid-base setting reaction between an finely fluoro-alumino silicate glass powder and poly(acrylic acid) in aqueous solution. The sol gel method is an adequate route of preparation of the glasses used to obtain the GICs. The objective of this paper was to compare two powders: a commercial and an experimental and to investigate the structural changes during hardening of the cements by FTIR and Al MAS NMR. These analyses showed that the experimental glass powder reacted with organic acid to form the GICs and it is a promising material to manufacture dental cements.
Resumo:
O objetivo deste trabalho foi analisar a morfologia dos cimentos Sealapex, Apexit, Sealer 26 (cimentos a base de hidróxido de cálcio) e Ketac Endo (cimento de ionômero de vidro), através da microscopia de força atômica, verificando-se as características de suas partículas após a obturação dos canais radiculares e após um período de seis meses de contato com o plasma sanguíneo humano. Utilizaram-se 16 dentes unirradiculares humanos extraídos e incluídos em blocos de resina após o preparo biomecânico. As raízes foram divididas em quatro grupos de quatro raízes cada e os canais radiculares obturados pela técnica de condensação lateral passiva com os cimentos em estudo. Verificou-se que o cimento Apexit foi o que mais sofreu desintegração após seis meses de imersão em plasma sanguíneo humano, seguido pelo Ketac Endo e Sealapex. Dentre todos os cimentos estudados, o Sealer 26 mostrou-se o mais uniforme e com a menor desintegração.