445 resultados para Dental acrylic resins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two high-performance liquid chromatographic methods for determination of residual monomer in dental acrylic resins are described. Monomers were detected by their UV absorbance at 230 nm, on a Nucleosil((R)) C-18 (5 mu m particle size, 100 angstrom pore size, 15 x 0.46 cm i.d.) column. The separation was performed using acetonitrile-water (55:45 v/v) containing 0.01% triethylamine (TEA) for methyl methacrylate and butyl methacrylate, and acetonitrile-water (60:40 v/v) containing 0.01% TEA for isobutyl methacrylate and 1,6-hexanediol dimethacrylate as mobile phases, at a flow rate of 0.8 mL/min. Good linear relationships were obtained in the concentration range 5.0-80.0 mu g/mL for methyl methacrylate, 10.0-160.0 mu g/mL for butyl methacrylate, 50.0-500.0 mu g/mL for isobutyl methacrylate and 2.5-180.0 mu g/mL for 1,6-hexanediol dimethacrylate. Adequate assay for intra- and inter-day precision and accuracy was observed during the validation process. An extraction procedure to remove residual monomer from the acrylic resins was also established. Residual monomer was obtained from broken specimens of acrylic disks using methanol as extraction solvent for 2 h in an ice-bath. The developed methods and the extraction procedure were applied to dental acrylic resins, tested with or without post-polymerization treatments, and proved to be accurate and precise for the determination of residual monomer content of the materials evaluated. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of the problem. In selecting a disinfectant for dental prostheses, compatibility between the disinfectant and the type of denture base material must be considered to avoid adverse effects on the hardness of the acrylic resin.Purpose. This study investigated the hardness of 2 denture base resins after disinfection and long-term water immersion.Material and methods. Thirty-two disk-shaped specimens (13 mm in diameter and 8 mm thick) were fabricated from each resin (Lucitone 550 and QC-20), polished, stored in water at 37degreesC for 48 hours, and submitted to hardness tests (Vickers hardness number [VHN]) before disinfection. Disinfection methods included scrubbing with 4% chlorhexidine gluconate for 1 minute, immersion for 10 minutes in I of the tested disinfectant Solutions (n=8) (3.78% sodium perborate, 4% chlorhexidine gluconate, or 1% sodium hypochorite), and immersion in water for 3 minutes. The disinfection procedures were repeated 4 times, and 12 hardness measurements were made on each specimen. Control specimens (not disinfected) were stored in water for 56 minutes. Hardness tests (VHN) were also performed after 15, 30, 60, 90, and 120 days of storage in water. Statistical analyses of data were conducted with a repeated measures 3-way analysis of variance (ANOVA) and Tukey post-hoc test (alpha=.05).Results. Mean values +/- SD for Lucitone 550 (16.52 +/- 0.94 VHN) and QC-20 (9.61 +/- 0.62 VHN) demonstrated a significant (P<.05) decrease in hardness after disinfection, regardless of material and disinfectant solutions used (Lucitone 550: 15.25 +/- 0.74; QC-20: 8.09 +/- 0.39). However, this effect was reversed after 15 days of storage in water. Both materials exhibited a continuous increase (P<.05) in hardness values for up to 60 days of water storage, after which no significant change was observed.Conclusion. Within the limitations of this in vitro study, QC-20 and Lucitone 550 specimens exhibited significantly lower hardness values after disinfection regardless of the disinfectant solution used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. This study compared the residual monomer (RM) in four hard chair-side reline resins (Duraliner II-D, Kooliner-K, Tokuso Rebase Fast-TRF and Ufi Gel hard-UGH) and one heat-polymerized denture base resin (Lucitone 550-L), which was processed using two polymerization cycles (short-LS and long-LL). It was also investigated the effect of two after polymerization treatments on this RM content.Methods. Specimens (n = 18) of each material were produced following the manufacturers' instructions and then divided into three groups. Group I specimens were left untreated (GI-control). Specimens of group II (GII) were given post-polymerization treatment by microwave irradiation. In group III (GIII), specimens were submitted to immersion in water at 55 degrees C (reline resins-10 min; denture base resin L-60min). The RM was analyzed using high performance liquid chromatography (HPLC) and expressed as a percentage of RM. Data were analyzed by two-way ANOVA followed by Tukey's test (alpha = 0.05).Results. Comparing control specimens, statistical differences were found among all materials (p < 0.05), and the results can be arranged as K (1.52%) > D (0.85%) > UGH (0.45%) > LL (0.24%) > TRF (0.14%) > LS (0.08%). Immersion in hot water (GIII) promoted a significant (p < 0.05) reduction in the RM for all materials evaluated compared to control (GI), with the exception of LL specimens. Materials K, UGH and TRF exhibited significantly (p < 0.05) lower values of RM after microwave irradiation (GII) than in the control specimens.Significance. The reduction in RM promoted by water-bath and microwave post-polymerization treatments could improve the mechanical properties and biocompatibility of the relining and denture base materials. (c) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disinfection of dental prostheses by immersion in a chemical solution should be capable of rapid inactivation of pathogenic microorganisms, without causing any adverse effect on the denture base resins. This study evaluated the effect of disinfection immersion on the transverse strength of two heat-cured resins. The denture base resins (Lucitone 550 and QC 20) were polymerized according to the manufacturers' instructions. After polymerization, the specimens were polished, and then stored in water at 37 degreesC for 50 +/- 2 h prior immersion in one of the following solutions for 10 min: 4% chlorhexidine, 1% sodium hypochlorite and 3.78% sodium perborate. The specimens were submitted to disinfection twice, simulating when dentures come from the patient and before being returned to the patient. Ten specimens were made for each group. The transverse strength was evaluated by a 3-point bend test. The flexural strength of the two denture base acrylic resins evaluated remained unaffected after immersion in the three solutions evaluated. In general, the QC 20 resin specimens exhibited lower transverse strength than the Lucitone 550 resin specimens, regardless of immersion solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STATEMENT OF PROBLEM: Because water sorption of autopolymerizing acrylic reline resins is accompanied by volumetric change, it is a physical property of importance. As residual monomer leaches into the oral fluids and causes tissue irritation, low solubility of these resins is desired. Another requirement is a satisfactory bond between the autopolymerizing acrylic resins and the denture base acrylic resin. PURPOSE: This study compared the water sorption, solubility, and the transverse bond strength of 2 autopolymerizing acrylic resins (Duraliner II and Kooliner) and 1 heat-polymerizing acrylic resin (Lucitone 550). MATERIAL AND METHODS: The water sorption and solubility test was performed as per International Standards Organization Specification No. 1567 for denture base polymers. Bond strengths between the autopolymerizing acrylic resins and the heat-polymerizing acrylic resin were determine with a 3-point loading test made on specimens immersed in distilled water at 37 degrees C for 50 hours and for 30 days. Visual inspection determined whether failures were adhesive or cohesive. RESULTS: Duraliner II acrylic resin showed significantly lower water sorption than Kooliner and Lucitone 550 acrylic resins. No difference was noted in the solubility of all materials. Kooliner acrylic resin demonstrated significantly lower transverse bond strength to denture base acrylic resin and failed adhesively. The failures seen with Duraliner II acrylic resin were primarily cohesive in nature. CONCLUSIONS: Autopolymerizing acrylic reline resins met water sorption and solubility requirements. However, Kooliner acrylic resin demonstrated significantly lower bond strength to denture base acrylic resin.