189 resultados para Crucero 6708
Resumo:
We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach.
Resumo:
The existence of an interpolating master action does not guarantee the same spectrum for the interpolated dual theories. In the specific case of a generalized self-dual (GSD) model defined as the addition of the Maxwell term to the self-dual model in D = 2 + 1, previous master actions have furnished a dual gauge theory which is either nonlocal or contains a ghost mode. Here we show that by reducing the Maxwell term to first order by means of an auxiliary field we are able to define a master action which interpolates between the GSD model and a couple of non-interacting Maxwell-Chern-Simons theories of opposite helicities. The presence of an auxiliary field explains the doubling of fields in the dual gauge theory. A generalized duality transformation is defined and both models can be interpreted as self-dual models. Furthermore, it is shown how to obtain the gauge invariant correlators of the non-interacting MCS theories from the correlators of the self-dual field in the GSD model and vice-versa. The derivation of the non-interacting MCS theories from the GSD model, as presented here, works in the opposite direction of the soldering approach.
Resumo:
We study the collider phenomenology of bilinear R-parity violating supergravity, the simplest effective model for supersymmetric neutrino masses accounting for the current neutrino oscillation data. At the CERN Large Hadron Collider the center-of-mass energy will be high enough to probe directly these models through the search for the superpartners of the Standard Model (SM) particles. We analyze the impact of R-parity violation on the canonical supersymmetry searches-that is, we examine how the decay of the lightest supersymmetric particle (LSP) via bilinear R-parity violating interactions degrades the average expected missing momentum of the reactions and show how this diminishes the reach in the usual channels for supersymmetry searches. However, the R-parity violating interactions lead to an enhancement of the final states containing isolated same-sign di-leptons and trileptons, compensating the reach loss in the fully inclusive channel. We show how the searches for displaced vertices associated to LSP decay substantially increase the coverage in supergravity parameter space, giving the corresponding reaches for two reference luminosities of 10 and 100 fb(-1) and compare with those of the R-parity conserving minimal supergravity model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The boundary conditions of the bosonic string theory in non-zero B-field background are equivalent to the second class constraints of a discretized version of the theory. By projecting the original canonical coordinates onto the constraint surface we derive a set of coordinates of string that are unconstrained. These coordinates represent a natural framework for the quantization of the theory.
Resumo:
Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted (c) over cap = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action.
Resumo:
We consider a field theory with target space being the two dimensional sphere S-2 and defined on the space-time S-3 x R. The Lagrangean is the square of the pull-back of the area form on S-2. It is invariant under the conformal group SO(4, 2) and the infinite dimensional group of area preserving diffeomorphisms of S-2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S-3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group.
Resumo:
Different string theories in twistor space have recently been proposed for describing N = 4 super-Yang-Mills. In this paper, a string theory in (x, theta) space is constructed for self-dual N = 4 super-Yang-Mills. It is hoped that these results will be useful for understanding the twistor-string proposals and their possible relation with the pure spinor formalism of the d = 10 superstring.
Resumo:
In this paper, a real-time formulation of light-cone pp-wave string field theory at finite temperature is presented. This is achieved by developing the thermo field dynamics (TFD) formalism in a second quantized string scenario. The equilibrium thermodynamic quantities for a pp-wave ideal string gas are derived directly from expectation values on the second quantized string thermal vacuum. Also, we derive the real-time thermal pp-wave closed string propagator. In the flat space limit it is shown that this propagator can be written in terms of Theta functions, exactly as the zero temperature one. At the end, we show how superstrings interactions can be introduced, making this approach suitable to study the BMN dictionary at finite temperature.
Resumo:
We propose a SUSY variant of the action for a massless spinning particles via the inclusion of twistor variables. The action is constructed to be invariant under SUSY transformations and tau-reparametrizations even when an interaction field is including. The constraint analysis is achieved and the equations of motion are derived. The commutation relations obtained for the commuting spinor variables lambda(alpha) show that the particle states have fractional statistics and spin. At once we introduce a possible massive term for the non-interacting model.
Resumo:
We show that tree level superstring theories on certain supersymmetric backgrounds admit a symmetry which we call "fermionic T-duality". This is a non-local redefinition of the fermionic worldsheet fields similar to the redefinition we perform on bosonic variables when we do an ordinary T-duality. This duality maps a supersymmetric background to another supersymmetric background with different RR fields and a different dilaton. We show that a certain combination of bosonic and fermionic T-dualities maps the full superstring theory on AdS(5) x S-5 back to itself in such a way that gluon scattering amplitudes in the original theory map to something very close to Wilson loops in the dual theory. This duality maps the "dual superconformal symmetry" of the original theory to the ordinary superconformal symmetry of the dual model. This explains the dual superconformal invariance of planar scattering amplitudes of N = 4 super Yang Mills and also sheds some light on the connection between amplitudes and Wilson loops. In the appendix, we propose a simple prescription for open superstring MHV tree amplitudes in a flat background.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present the higgsing of three-dimensional N = 6 superconformal ABJM type theories coupled to conformal supergravity, so called topologically gauged ABJM theory, thus providing a gravitational extension of previous work on the relation between N M2 and N D2-branes. The resulting N = 6 supergravity theory appears at a chiral point similar to that of three-dimensional chiral gravity introduced recently by Li, Song and Strominger, but with the opposite sign for the Ricci scalar term in the lagrangian. We identify the supersymmetry in the broken phase as a particular linear combination of the supersymmetry and special conformal supersymmetry in the original topologically gauged ABJM theory. We also discuss the higgsing procedure in detail paying special attention to the role played by the U(1) factors in the original ABJM model and the U(1) introduced in the topological gauging.