32 resultados para Chaotic Motion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tapping mode is one of the mostly employed techniques in atomic force microscopy due to its accurate imaging quality for a wide variety of surfaces. However, chaotic microcantilever motion impairs the obtention of accurate images from the sample surfaces. In order to investigate the problem the tapping mode atomic force microscope is modeled and chaotic motion is identified for a wide range of the parameter's values. Additionally, attempting to prevent the chaotic motion, two control techniques are implemented: the optimal linear feedback control and the time-delayed feedback control. The simulation results show the feasibility of the techniques for chaos control in the atomic force microscopy. © 2012 IMechE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last 30 years the Atomic Force Microscopy became the most powerful tool for surface probing in atomic scale. The Tapping-Mode Atomic Force Microscope is used to generate high quality accurate images of the samples surface. However, in this mode of operation the microcantilever frequently presents chaotic motion due to the nonlinear characteristics of the tip-sample forces interactions, degrading the image quality. This kind of irregular motion must be avoided by the control system. In this work, the tip-sample interaction is modelled considering the Lennard-Jones potentials and the two-term Galerkin aproximation. Additionally, the State Dependent Ricatti Equation and Time-Delayed Feedback Control techniques are used in order to force the Tapping-Mode Atomic Force Microscope system motion to a periodic orbit, preventing the microcantilever chaotic motion

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We identify and analyze quasiperiodic and chaotic motion patterns in the time evolution of a classical, non-Abelian Bogomol'nyi-Prasad-Sommerfield (BPS) dyon pair at low energies. This system is amenable to the geodesic approximation which restricts the underlying SU(2) Yang-Mills-Higgs dynamics to an eight-dimensional phase space. We numerically calculate a representative set of long-time solutions to the corresponding Hamilton equations and analyze quasiperiodic and chaotic phase space regions by means of Poincare surfaces of section, high-resolution power spectra and Lyapunov exponents. Our results provide clear evidence for both quasiperiodic and chaotic behavior and characterize it quantitatively. Indications for intermittency are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dynamics of a pair of satellites similar to Enceladus-Dione is investigated with a two-degrees-of-freedom model written in the domain of the planar general three-body problem. Using surfaces of section and spectral analysis methods, we study the phase space of the system in terms of several parameters, including the most recent data. A detailed study of the main possible regimes of motion is presented, and in particular we show that, besides the two separated resonances, the phase space is replete of secondary resonances.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nonideal systems are those in which one takes account of the influence of the oscillatory system on the energy supply with a limited power (Kononenko, 1969). In this paper, a particular nonideal system is investigated, consisting of a pendulum whose support point is vibrated along a horizontal guide by a two bar linkage driven by a DC motor, considered to be a limited power supply. Under these conditions, the oscillations of the pendulum are analyzed through the variation of a control parameter. The voltage supply of the motor is considered to be a reliable control parameter. Each simulation starts from zero speed and reaches a steady-state condition when the motor oscillates around a medium speed. Near the fundamental resonance region, the system presents some interesting nonlinear phenomena, including multi-periodic, quasiperiodic, and chaotic motion. The loss of stability of the system occurs through a saddle-node bifurcation, where there is a collision of a stable orbit with an unstable one, which is approximately located close to the value of the pendulum's angular displacement given by alpha (C)= pi /2. The aims of this study are to better understand nonideal systems using numerical simulation, to identify the bifurcations that occur in the system, and to report the existence of a chaotic attractor near the fundamental resonance. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuned liquid column dampers are U-tubes filled with some liquid, acting as an active vibration damper in structures of engineering interest like buildings and bridges. We study the effect of a tuned liquid column damper in a vibrating system consisting of a cart which vibrates under driving by a source with limited power supply (non-ideal excitation). The effect of a liquid damper is studied in some dynamical regimes characterized by coexistence of both periodic and chaotic motion. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate numerically the dynamical behavior of a non-ideal mechanical system consisting of a vibrating cart containing a particle which can oscillate back and forth colliding with walls carved in the cart. This system represents an impact damper for controlling high-amplitude vibrations and chaotic motion. The motion of the cart is induced by an in-board non-ideal motor driving an unbalanced rotor. We study the phase space of the cart and the bouncing particle, in particular the intertwined smooth and fractal basin boundary structure. The control of the chaotic motion of the cart due to the particle impacts is also investigated. Our numerical results suggests that impact dampers of small masses are effective to suppress chaos, but they also increase the final-state sensitivity of the system in its phase space. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this Letter, an optimal control strategy that directs the chaotic motion of the Rossler system to any desired fixed point is proposed. The chaos control problem is then formulated as being an infinite horizon optimal control nonlinear problem that was reduced to a solution of the associated Hamilton-Jacobi-Bellman equation. We obtained its solution among the correspondent Lyapunov functions of the considered dynamical system. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work we numerically simulated the motion of particles coorbital to a small satellite under the Poynting-Robertson light drag effect in order to verify the symmetry suggested by Dermott et al. (1979, 1980) on their ring confinement model. The results reveal a more complex scenario, especially for very small particles (micrometer sizes), which present chaotic motion. Despite the complexity of the trajectories the particles remain confined inside the coorbital region. However, the dissipative force caused by the solar radiation also includes the radiation pressure component which can change this configuration. Our results show that the inclusion of the radiation pressure, which is not present in the original confinement model, can destroy the configuration in a time much shorter than the survival time predicted for a dust particle in a horseshoe orbit with a satellite.