56 resultados para Ceramic films
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of polymeric precursors was employed in preparing SrTiO3 thin films by dip coating using Si (111) as substrate. Crack free films were obtained after sintering at temperatures ranging from 550 to 1000°C. The microstructure, characterized by SEM, shows the development of dense polycrystalline films with smooth surface and mean grain size of 52 nm, for films sintered at 1000°C. Grazing incident angle XRD characterization of these films shows that the SrTiO3 phase crystallizes from an inorganic amorphous matrix. No intermediate crystalline phase was identified.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. This study characterized the feldspathic ceramic surfaces after various silanization protocols.Methods. Ceramic bars (2 mm x 4 mm x 10 mm) (N = 18) of feldpathic ceramic (VM7, VITA Zahnfabrik) were manufactured and finished. Before silane application, the specimens were ultrasonically cleaned in distilled water for 10 min. The ceramic specimens were randomly divided into nine groups (N = 2 per group) and were treated with different silane protocols. MPS silane (ESPE-Sil, 3M ESPE) was applied to all specimens and left to react at 20 degrees C for 2 min (G20). After drying, the specimens were subjected to heat treatment in an oven at 38 degrees C (G38), 79 degrees C (G79) or 100 degrees C (G100) for 1 min. Half of the specimens of each group were rinsed with water at 80 degrees C for 15 s (G20B, G38B, G79B, G100B). The control group (GC) received no silane. Attenuated total reflection infrared Fourier transform analysis (ATR FT-IR) was performed using a spectrometer. Thickness of silane layer was measured using a spectroscopic ellip-someter working in the lambda = 632.8 nm (He-Ne laser) at 70 degrees incidence angle. Surface roughness was evaluated using an optical profilometer. Specimens were further analyzed under the Scanning Electron Microscopy (SEM) to observe the topographic patterns.Results. ATR FT-IR analysis showed changes in Si-O peaks with enlarged bands around 940 cm(-1). Ellipsometry measurements showed that all post-heat treatment actions reduced the silane film thickness (30.8-33.5 nm) compared to G20 (40 nm). The groups submitted to rinsing in hot water (B groups) showed thinner silane films (9.8-14.4 nm) than those of their corresponding groups (without washing) (30.8-40 nm). Profilometer analysis showed that heat treatments (Ra approximate to 0.10-0.19 mu m; Rq approximate to 0.15-0.26 mu m) provided a smoother surface than the control group (Ra approximate to 0.48 mu m; Rq approximate to 0.65 mu m). Similar patterns were also observed in SEM images.Significance. Heat treatment after MPS silane application improved the silane layer network. Rinsing with boiling water eliminated the outmost unreacted regions of the silane yielding to thinner film thicknesses. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Thin films of lithium niobate were deposited on the Pt/Ti/SiO2 (111) substrates by spin coating from the polymeric precursor method (Pechini process). Annealing in static air and oxygen atmosphere was performed at 500 degreesC for 3 h. The films obtained were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The dielectric constant and dissipation factor were measured in frequency region from 10 Hz to 10 MHz. Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. The influence of oxygen atmosphere on crystallization, morphology and properties of LiNbO3 thin films is discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Transparent thin films of nanocrystalline anatase were obtained by dip-coating process using an ethanolic suspension of redispersed nanoparticles. This suspension was prepared by sol-gel route and their redispersability achieved by surface grafting of para-toluene-sulfonic acid and acetylacetone. The effects of the acetylacetone content on the powder redispersibility and on the structural evolution of films were determined by small angle X-ray scattering, X-ray reflectometry and X-ray diffraction for different firing temperatures. The results demonstrated that the porous structure of the studied films consist of agglomerates of primary particles with two levels of porosity. The control of the amount of capping ligand allows for a fine-tuning of the average pore size of the dried films. Upon increasing the firing temperature up to 500 degrees C, progressive increase in apparent density, average pore size of films and average crystallite size of powders were observed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
SrBi2Nb2O9 thin films were produced by the polymeric precursor method using an aqueous solution. The crystallization of the films was carried out using a domestic microwave oven by means of a SiC susceptor in order to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films obtained are well-adhered, homogeneous and with good specularity, even when treated at 600 degreesC for 10 min. The microstructure and the structure of the films can be tuned by adjusting the crystallization conditions. Depending on the direction of the heat flux it is possible to obtain preferential oriented or polycrystalline films in the microwave oven for 10 min. The microstructure presented a polycrystalline nature with spheroid small mean grain size when the susceptor is placed above the substrate. When the susceptor is placed below the substrate, the films presented platelet grains with mean grain size around 250 nm and a 001 orientation. For comparison, films were also prepared by the conventional method at 700 degreesC for 2 h. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Ferroelectric Pb1-xCaxTiO3 (x = 0.24) thin films were formed on a Pt/Ti/SiO2/Si substrate by the polymeric precursor method using the dip-coating technique for their deposition. Characterization of the films bq X-ray diffraction showed a perovskite single phase with a tetragonal structure after annealing at 700 degreesC. Atomic force microscopy (AFM) analyses showed that the film had a smooth and crack-free surface with low surface roughness. In addition, the PCT thin film had a granular structure with an 80 nm grain size. The thickness of the films observed by the scanning electron microscopy (SEM) is 550 nm and there is a good adhesion between the film and substrate. For the electrical measurements metal-ferroelectric-metal of the type capacitors were obtained, where the thin films showed good dielectric and ferroelectric properties. The dielectric constant and dissipation factor at 1 kHz and measured at room temperature were found to be 457 and 0.03. respectively. The remanent polarization and coercive field for the: deposited films were P-r = 17 muC/cm(2) and E-c = 75 kV/cm, respectively. Moreover. The 550-nm-thick film showed a current density in the order of 10(-8) A/cm(2) at the applied voltage of 2 V. The high values of the thin film's dielectric properties are attributed to its excellent microstructural quality and the chemical homogeneity obtained by the polymeric precursor method. (C) 2001 Elsevier science Ltd. All rights reserved.
Resumo:
Tin dioxide (SnO2) thin film photoconductivity spectra were measured for a large temperature range using a deuterium source, the intensity of photocurrent spectra in the range 200-400 nm is temperature dependent, and the photocurrent increases in the ultraviolet even for illumination with photon energies much higher than the bandgap transition. This behavior is related to recombination of photogenerated electron-hole pairs with oxygen adsorbed at grain boundaries, which is consistent with nanoscopic crystallite size of sol-gel deposited films. (c) 2005 Elsevier Ltd. All rights reserved.