24 resultados para Cellular process


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Melanins are dark, insoluble pigments that are resistant to concentrated acids and bleaching by oxidising agents. Phytomelanin (or phytomelan) is present in the seed coat of some Asparagales and in the fruits of some Compositae. In Compositae fruits, melanin is deposited in the schizogenous spaces between the hypodermis and underlying fibrous layer. Phytomelanin in Compositae is poorly understood, and there are only speculations regarding the cells that produce the pigment and the cellular processes involved in the secretion and polymerisation of phytomelanin. This report describes the cellular processes involved in the secretion of phytomelanin in the pericarp of Praxelis diffusa, a species with a structure typical of the family. The ovaries and fruits at different stages were fixed and processed according to the standard methods of studies of light microscopy and transmission electron microscopy. Hypodermal cells have abundant rough endoplasmic reticulum and mitochondria, and the nuclei have chromatin that is less dense than other cells. These characteristics are typical of cells that synthesise protein/amino acids and suggest no carbohydrate secretion. The fibres, however, have a dense cytoplasm rich in the Golgi bodies that are associated with vesicles and smooth endoplasmic reticulum, common characteristics of carbohydrate secretory cells. Our results indicate that the hypodermal cells are not responsible for the secretion of phytomelanin, as previously described in the literature; in contrast, this function is assigned to the adjacent fibres, which have an organisation typical of cells that secrete carbohydrates. © 2012 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Petroleum and derivatives have been considered one of the main environmental contaminants. Among petroleum derivatives, the volatile organic compounds benzene, toluene, ethylbenzene and xylene (BTEX) represent a major concern due to their toxicity and easy accumulation in groundwater. Biodegradation methods seem to be suitable tools for the clean-up of BTEX contaminants from groundwater. Genotoxic and mutagenic potential of BTEX prior and after biodegradation process was evaluated through analyses of chromosomal aberrations and MN test in meristematic and F 1 root cells using the Allium cepa test system. Seeds of A. cepa were germinated into five concentrations of BTEX, non-biodegraded and biodegraded, in ultra-pure water (negative control), in MMS 4×10 -4M (positive control) and in culture medium used in the biodegradation (blank biodegradation control). Results showed a significant frequency of both chromosomal and nuclear aberrations. The micronucleus (MN) frequency in meristematic cells was significant for most of tested samples. However, MN was not present in significant levels in the F 1 cells, suggesting that there was no permanent damage for the meristematic cell. The BTEX effects were significantly reduced in the biodegraded samples when compared to the respective non-biodegraded concentrations. Therefore, in this study, the biodegradation process showed to be a reliable and effective alternative to treat BTEX-contaminated waters. Based on our results and available data, the BTEX toxicity could also be related to a synergistic effect of its compounds. © 2011 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ovary of the tick Ainblyomma triste is classified as panoistic, which is characterized by the presence of oogonia without nurse and follicular cells. The present study has demonstrated that the oocytes in all developmental stages (I-IV) are attached to the ovary through a pedicel, a cellular structure that synthesizes and provides carbohydrate, lipids and proteins supplies for the oocytes during the vitellogenesis process. The lipids are deposited during all oocyte stages; they are freely distributed as observed in stages II, III and IV or they form complexes with other elements. The proteins are also deposited in all stages of the oocytes, however, in lower concentration in the stage IV. There is carbohydrate deposition from oocytes in the stage II as well as in stages III and IV. In addition, the present work has demonstrated that the oocyte yolk of A. triste has a glycolipoprotein nature and the elements are deposited in the following sequence: firstly the lipids and proteins, and finally the carbohydrates. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review provides an overview of several molecular and cellular approaches that are likely to supply insights into the host-fungus interaction. Fungi present intra- and/or extracellular host-parasite interfaces, the parasitism phenomenon being dependent on complementary surface molecules. The entry of the pathogen into the host cell is initiated by the fungus adhering to the cell surface, which generates an uptake signal that may induce its cytoplasmatic internalization. Furthermore, microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. on the other hand, integrins mediate the tight adhesion of cells to the ECM at sites referred to as focal adhesions and also play a role in cell signaling. The phosphorylation process is an important mechanism of cell signaling and regulation; it has been implicated recently in defense strategies against a variety of pathogens that alter host-signaling pathways in order to facilitate their invasion and survival within host cells. The study of signal transduction pathways in virulent fungi is especially important in view of their putative role in the regulation of pathogenicity. This review discusses fungal adherence, changes in cytoskeletal organization and signal transduction in relation to host-fungus interaction. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we describe the application of microparticles (MPs) for the delivery and release of the drug a benzopsoralen. We also evaluated the intracellular distribution and cellular uptake of the drug by using an encapsulation technique for therapeutic optimization. MPs containing the compound 3-ethoxycarbonyl-2H-benzofuro[3,2-f]-1-benzopyran-2-one (psoralen A) were prepared by the solvent evaporation technique, and parameters such as particle size, drug encapsulation efficiency, effect of the encapsulation process on the drug's photochemistry, zeta potential, external morphology, and < i > in vitro release behavior were evaluated. The intracellular distribution of MPs as well as their uptake by tissues were monitored. Size distribution studies using dynamic ligh scattering and scanning electron microscopy revealed that the MPs are spherical in shape with a diameter of 1.4 mu m. They present low tendency toward aggregation, as confirmed by their zeta potential (+10.6 mV). The loading efficiency obtained was 75%. As a consequence of the extremely low diffusivity of the drug in aqueous medium, the drug release profile of the MPs in saline phosphate buffer (pH 7.4) was much slower than that obtained in the biological environment. Among the population of peritoneal phagocytic cells, only macrophages were able to phagocytose poly-d,l-lactic-co-glycolic acid (PLGA) MP. The use of psoralen A in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytoplasmic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmatic reticulum and the nuclear membrane. These results indicate that PLGA MP could be a promising delivery system for psoralen in connection with ultraviolet irradiation therapy (PUVA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, piezoelectric cellular polypropylene (PP) was proposed as a new type of quasi-ferroelectric. The observed hysteresis of the charge density as a function of the electric field could be explained as field-dependent charging inside the gas-filled voids. Interestingly enough, the measurable poling behavior of the macroscopic dipoles formed by charges that are trapped at the internal void surfaces is phenomenologically completely identical to the cooperative poling behavior of microscopic molecular dipoles in ferroelectric polymers. Therefore, it can be assumed that charge separation (or charge redistribution) and subsequent trapping in cellular PP is a rather fast switching process. In order to examine the poling dynamics, we developed an experimental setup for pulsed poling. High-voltage pulses with a duration of 45 μs (FWHM) were applied in direct contact to two-side metallized cellular PP films. The pulsed poling yields piezoelectricity in the cellular PP. We study and discuss the dependence of the resulting piezoelectricity on the poling field. We also characterize the charge separation during application of higher electric poling fields of up to -10 kV in direct contact to the two-side metallized films for longer times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When the food supply flnishes, or when the larvae of blowflies complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as post-feeding larval dispersal. Based on experimental data of the Initial and final configuration of the dispersion, the reproduction of such spatio-temporal behavior is achieved here by means of the evolutionary search for cellular automata with a distinct transition rule associated with each cell, also known as a nonuniform cellular automata, and with two states per cell in the lattice. Two-dimensional regular lattices and multivalued states will be considered and a practical question is the necessity of discovering a proper set of transition rules. Given that the number of rules is related to the number of cells in the lattice, the search space is very large and an evolution strategy is then considered to optimize the parameters of the transition rules, with two transition rules per cell. As the parameters to be optimized admit a physical interpretation, the obtained computational model can be analyzed to raise some hypothetical explanation of the observed spatiotemporal behavior. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptosis is necessary for maintaining the integrity of proliferative tissues, such as epithelial cells of the gastrointestinal and integumentary systems. The role of apoptosis in post-mitotic tissues, such as skeletal muscle, is less well defined, but several lines of evidence suggest that it occurs in both myofiber and other interstitial muscle cell types. Apoptosis of myonuclei likely contributes to the loss of muscle mass, but the mechanisms underlying this process are largely unknown. Caspase-dependent as well as caspase-independent pathways have been implicated, and the mode by which atrophy is induced likely determines the apoptotic mechanisms that are utilized. It remains to be determined whether a decrease in apoptosis will alleviate atrophy and distinct research strategies may be required to clarify the different causes of skeletal muscle mass loss. In this review, it was also speculated that apoptosis is a normal regulatory process that the myofiber can use to reduce the number of nuclear domains, thus ensuring optimal cell functions according to the mechanical load imposed on the muscle. ©FUNPEC-RP.