327 resultados para Catecholamine Excretion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three species of phylogenetically related semi-terrestrial crabs (Superfamily Grapsoidea - Sesarma rectum, Goniopsis cruentata and Neohelice granulata (formerly: Chasmagnathus granulatus) with different degrees of terrestriality were studied to quantify the accumulation of copper (Cu) in hemolymph, gills, hepatopancreas and antennal gland, and its excretion through the faeces. These crabs were fed for 15 days practical diets containing 0 (A), 0.5 (B), 1.0 (C), and 1.5% (D) of added CuCl2 (corresponding to 0, 0.2, 0.5 and 0.7% of Cu2+, respectively). The amount of food ingested was directly proportional to the degree of terrestriality: S. rectum, the most terrestrial species, ate around 2-3 times more than the other crabs, whereas G. cruentata ate 1.5-2 times more than N. granulata, the least terrestrial. The amount of Cu excreted in the feces was proportional to Cu ingestion, and was 76.8% and 64.2% higher for Sesarma fed diet D compared to G. cruentata and N. granulata, respectively. Sesarma also displayed higher Cu concentration in the haemolymph, gills and antennal glands, but not in the hepatopancreas. A detoxifying mechanism followed by elimination was probably present at this last organ, preventing Cu accumulation. More terrestrial crabs, such as Sesarma, may accumulate more Cu in hemolymph and tissues, showing a correlation between metal accumulation and increased terrestriality. In this aspect, contaminated feed sources with Cu may have more impact in conservation of terrestrial crabs. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This trial was conducted to evaluate the utilization of low-protein diets formulated based on the ideal protein concept for broiler chickens from 7 to 21 days of age reared at different environmental temperatures. Nine hundred male Cobb-500® chickens were used. At day seven chicks were distributed according to a completely randomized design in a 3 x 3 factorial with four replications of 25 birds each. It was used three crude protein levels in the diet (21.5; 20.0 and 18.5%) and three environmental temperatures (low, thermoneutral and high). The performance, carcass characteristics (yield and chemical composition), and nitrogen ingestion and excretion were assessed. There was no significant interaction among the factors for the evaluated variables. Environmental temperatures affected differently chicken performance. High environmental temperature resulted in lower weight gain and higher wing fat percentage, whereas cold temperature resulted in higher feed conversion. on the other hand, low-protein diets decreased weight gain, breast yield, nitrogen excretion and influenced breast and wings chemical composition. Birds reared at high environmental temperature showed lower nitrogen intake and excretion. The results showed that the decrease in protein levels from 7 to 21 days of age contributed to lower nitrogen excretion in broiler chickens, but impaired performance and carcass characteristics independent of rearing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orofacial movement is a complex function performed by facial and jaw muscles. Jaw movement is enacted through the triggering of motoneurons located primarily in the trigeminal motor nucleus (Mo5). The Mo5 is located in the pontine reticular formation, which is encircled by premotor neurons. Previous studies using retrograde tracers have demonstrated that premotor neurons innervating the Mo5 are distributed in brainstem areas, and electrophysiological studies have suggested the existence of a subcortical relay in the corticofugal-Mo5 pathway. Various neurotransmitters have been implicated in oral movement. Dopamine is of special interest since its imbalance may produce changes in basal ganglia activity, which generates abnormal movements, including jaw motor dysfunction, as in oral dyskinesia and possibly in bruxism. However, the anatomical pathways connecting the dopaminergic systems with Mo5 motoneurons have not been studied systematically. After injecting retrograde tracer fluorogold into the Mo5, we observed retrograde-labeled neurons in brainstem areas and in a few forebrain nuclei, such as the central nucleus of the amygdala, and the parasubthalamic nucleus. By using dual-labeled immunohistochemistry, we found tyrosine hydroxylase (a catecholamine-processing enzyme) immunoreactive fibers in close apposition to retrograde-labeled neurons in brainstem nuclei, in the central nucleus of the amygdala and the parasubthalamic nucleus, suggesting the occurrence of synaptic contacts. Therefore, we suggested that catecholamines may regulate oralfacial movements through the premotor brainstem nuclei, which are related to masticatory control, and forebrain areas related to autonomic and stress responses. (C) 2005 Elsevier B.V.. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circumventricular structures and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANGII) on water and electrolyte regulation. Several anatomical findings have demonstrated neural connection between circumventricular structures and the LH, the present experiments were conducted to investigate the role of the alpha-adrenergic antagonists and agonistic injected into the LH on the water intake, sodium and potassium excretion elicited by injections of ANGII into the lateral ventricle (LV), the water intake was measured every 30 min over a period of 120 min. The sodium, potassium and urinary volume were measured over a period of 120 min in water-loaded rats. The injection of ANGII into the LV increased the water intake, which was reduced by previous injection of clonidine (an alpha-2-adrenergic agonist) into the LH. The injection of yohimbine (an alpha-2-adrenergic antagonist) and prazosin (an alpha-l-adrenergic antagonist) into the LH, which was done before injecting ANGII into the LV, also reduced the water intake induced by ANGII. The injection of ANGII into the LV reduced the sodium, potassium and urinary volume. Previous treatment with clonidine attenuated the action of ANGII in reducing the sodium, potassium and urinary volume, whereas previous treatment with yohimbine attenuated the effects of ANGII but with less intensity than that caused by clonidine. Previous treatment with prazosin increased the inhibitory effects of ANGII in those parameters. The injection of yohimbine and prazosin, which was done before the injection of clonidine, attenuated the effect of clonidine on the ANGII mechanism. The results of this study led us to postulate that when alpha-2-adrenergic receptors are blocked, the clonidine may act on the imidazoline receptors to produce its effects on the ANGII mechanism. We may also conclude that the LH is involved with circumventricular structures, which present excitatory and inhibitory mechanisms. Such mechanisms are responsible for regulating the renal excretion of sodium, potassium and water, (C) 2000 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg/Kg (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle and stainless steel cannulas were implanted into their supraoptic nucleus (SON). We investigated the effects of the injection into the supraoptic nucleus (SON) of FK 409, a nitric oxide donor, and N(W-)nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor (NOS), on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine, which was injected into SON. The drugs were injected in 0.5 mul volume over 30-60 s. Controls was injected with a similar volume of 0.15 M NaCl. FK 409 and L-NAME were injected at doses of 20 mug/0.5 mul and 40 mug/0.5 mul. respectively. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into SON. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into SON produced a dose-dependent increase in salivary secretion. L-NAME was injected into SON prior to the injection of pilocarpine into SON, producing an increase in salivary secretion due to the effect of pilocarpine. FK 409 injected into SON attenuating the increase in salivary secretion induced by pilocarpine. Mean arterial pressure (MAP) increase after injections of pilocarpine into the SON. L-NAME injected into the SON prior to injection of pilocarpine into SON increased the MAP. FK 409 injected into the SON prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (0.5 mumol/0.5 mul) injected into the SON induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the SON increased the urinary sodium excretion and urinary volume induced by pilocarpine. FK 409 injected prior to pilocarpine into the SON decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the SON. In summary the present results show: a) SON is involved in pilocarpine-induced salivation; b) that mechanism involves increase in MAP, sodium excretion and urinary volume. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg/Kg (tiletamine chloridrate 125,0 mg and zolazepan chloridrate 125,0 mg) into quadriceps muscle and submitted an electrolytic lesion of the lateral hypothalamus (LH) and a stainless steel cannula was implanted into their median preoptic nucleus (MnPO). We investigated the effects of the injection into the (MnPO) of FK 409 (20 mug/0.5 mul), a nitric oxide (NO) donor, and N-W-nitro-L-arginine methyl ester (L-NAME) 40 mug/0.5 mul, a nitric oxide synthase inhibitor (NOSI), on the water and sodium appetite and the natriuretic, diuretic and cardiovascular effects induced by injection of L-NAME and FK 409 injected into MnPO in rats with LH lesions. Controls were injected with a similar volume of 0.15 M NaCl. L-NAME injected into MnPO produced an increase in water and sodium intake and in sodium and urine excretion and increase de mean arterial pressure (MAP). FK 409 injected into MnPO did not produce any change in the hydro electrolytic and cardiovascular parameters in LH-sham and lesioned rats. FK 409 injected before L-NAME attenuated its effects. These data show that electrolytic lesion of the LH reduces fluid and sodium intake as well as sodium and urine excretion, and the pressor effect induced by L-NAME. LH involvement with NO of the MnPO excitatory and inhibitory mechanisms related to water and sodium intake, sodium excretion and cardiovascular control is suggested. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated the influence of cu-adrenergic antagonists injections into the paraventricular nucleus (PVN) of the hypothalamus on the thirst and salt appetite, diuresis, natriuresis, and presser effects of angiotensin II (ANG II) stimulation of medial septal area (MSA). ANG II injection into the MSA induced water and sodium intake, diuresis, natriuresis, and presser responses. The previous injection of prazosin (an alpha (1)-adrenergic antagonist) into the PVN abolished, whereas previous administration of yohimbine (an alpha (2)-adrenergic antagonist) into the PVN increased the water and sodium intake, urinary, natriuretic, and presser responses induced by ANG ii injected into the MSA. Previous injection of a nonselective alpha -adrenergic antagonist, regitin, into the PVN blocked the urinary excretion, and reduced the water and sodium intake, sodium intake, and presser responses induced by ANG II injected into the MSA. The present results suggest that alpha -adrenergic pathways involving the PVN are important for the water and sodium excretion, urine and sodium excretion, and presser responses, induced by angiotensinergic activation of the MSA. (C) 2001 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 5-hydroxytryptamine (5-HT)(1A) receptor system plays a prominent role in a variety of physiological functions and behavior and regulation of this responsiveness of the receptor system has been implicated in the central regulation of water intake and urinary excretion. The lateral septal area (LSA) exhibits a high density of 5-HT1A receptors, as well as a subpopulation of oxytocin (OT) receptors. Here we report the effects of pMPPF (a selective 5-HT1A antagonist), d(CH2)(5)[Tyr(Me)(2)Thr(4), Orn(5), Tyr(NH2)(9)]-vasotocin (an OT antagonist), and that 5-HT1A receptor system is regulated as a consequence of activation of the Na+ channel by veratridine. Cannulae were implanted into the LSA of rats to enable the introduction of the drugs. Injections of 8-OH-DPAT (a 5-HT1A agonist) blocked water intake and increased urinary excretion, while pMPPF or the OT antagonist injected bilaterally before 8-OH-DPAT blocked its inhibitory effect on water intake and its diuretic effect. In contrast, increases in extracellular sodium levels induced by the sodium channel modulator, veratridine, enhanced 5-HT1A responsiveness for water intake and reduced the diuretic effects induced by 8-OH-DPAT. These trials demonstrated that the responsiveness of the 5-HT1A receptor system in the LSA can be enhanced or depressed as a consequence of an induced rise in extracellular sodium. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paraventricular nucleus (PVN) may be considered as a dynamic mosaic of chemically-specified subgroups of neurons. 5-HT1A is one of the prime receptors identified and there is expressed throughout all magnocellular regions of the PVN. Several reports have demonstrated that a subpopulation of the magnocellular neurons expressing 5-HT1A receptors are oxytocin (OT) neurons and activation of 5-HT1A receptors in the PVN increases the plasma OT. Increasing evidence shows that OT inhibits water intake and increases urinary excretion in rats. The aim of this study was to investigate the role of serotonergic 5-HT1A receptors in the lateral-medial posterior magnocellular region of the PVN in the water intake and diuresis induced by 24 h of water deprivation. Cannulae were implanted in the PVN of rats. 5-HT injections in the PVN reduced water intake and increased urinary excretion. 8-OH-DPAT (a 5-HT1A agonist) injections blocked the water intake and increased urinary output in all the periods of the observation. pMPPF (a 5-HT1A antagonist) injected bilaterally before the 8-OH-DPAT blocked its inhibitory effect on water intake and its diuretic effect. We suggest that antidipsogenic and diuretic responses seem to be mediated via 5-HT1A receptors of the lateral-medial posterior magnocellular region of the PVN in water-deprived rats. (C) 2008 Elsevier B.V. All rights reserved.