22 resultados para Capacitive strain gages


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a high senstivity low cost capacitive strain gage sensor. The theory, design, and sensor construction details are presented. It consists of eight capacitive sensors connected in two full bridges. The capacitive strain gage sensor structure was designed in order to produce high sensitivity and low dependence with temperature. By using a simple signal conditioning circuit constituted by a differential amplifier, a band-pass filter, and a precision rectifier the device can measure forces with resolution of 0.009 N and precision of 98.7%. It is rugged, presents linear response, and good repeatability. It presents sensitivity of 8.7 V/N and fall time of 12 ms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work are presented the values found with the experimental testing, in the semi-elliptic leaf spring, utilizing 24 strain gages, distributed in five leaves of springs; these values have been compared to the calculated values found with the application of Norm SAE J788 (1982). The results showed discrepancy between the values measured and calculated and that the Norm is not indicated to determine the actuating stress in any point of any leaf of the leaf spring, but due to its simplicity and quickness of the process it presents good precision for the pre-development of the product. Copyright © 2002 Society of Automotive Engineers, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The instrumentation applied to the Charpy test machine allows the accompaniment of the specimen answer front the impact load, in form of a sign characteristically dynamic representative of the deformation process and it fractures of material tested. The main advantages of the rehearsal conventional Charpy: low cost, manufacturing sample facilities and simple handle the machine. With the instrumentation, the number of information regarding the process of fracture of the specimen increases. In this work discusses the influence of the hammer geometry in determination of the force during the process of specimen fracture submitted to the instrumented impact test Charpy-V. The purpose is obtaining a hammer, in conformity with Norma ISO 14.556, with great sensibility to register the force during the impact. Two geometries different from hammers were instrumented and rehearsed with material of low tenacity, in this case the steel ABNT 4140 in the condition of having normalized. It could be proven as larger the sensibility of the hammer, adult will be the effects of the shock waves in the strain gages of the transducer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 1000-kgf resistive strain-gauge load cell has been developed for quality testing of rocket propellant grain. A 7075-T6 aluminum alloy has been used for the elastic column, in which 8 uniaxial, 120-Ω strain gauges have been bonded and connected to form a full Wheatstone bridge to detect the strain. The chosen geometry makes the transducer insensitive to moments and, also, to the temperature. Experimental tests using a universal testing machine to imposed compression force to the load cell have demonstrated that its behavior is linear, with sensitivity of 2.90 μV/kgf ± 0.34%, and negligible hysteresis. The designed force transducer response to a dynamic test has been comparable to that of a commercial load cell. © 2005 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies on the distribution of plantar pressure between the sole of the foot and the ground were developed before the 19th century. Currently, the most often employed plantar pressure measurement systems are Pedar® and FScan®, which have restrictions such as operational difficulty and high cost. In the present study, a device was constructed from two pressure plates capable of measuring plantar forces in discreet areas of the feet at a low cost, using strain-gages attached to sixteen strategic points of the mechanical elements. Sixteen prismatic beams were soldered to each frame, for which the free extremity of each beam represented a specific point of the foot. Two strain gauges were attached to each beam - one near the upper fixed extremity and the other near the lower fixed extremity. Using a Wheatstone bridge electric circuit, the gauges were used to measure the force acting on the extremity of the beam. Precision and accuracy of the prototype was about 10%. In some measurements, accuracy was 2%. The low precision and accuracy were mainly due to the restrictions of the available equipment, which only permitted four measurements at a time. Thus, it was necessary for participants to stand on the plates four separate times, which signified possible changes in the position of the feet on the pressure plates. Despite some limitations, the aim was achieved. The prototype has been used in some studies and represents a contribution to biomechanics, demonstrating the viability of using strain gauges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes an electronic system implementation with two force plates, 24 load cells with strain gages, signal conditioning circuit, interfacing circuit and data acquisition system, designed for measuring plantar force distribution in patients. The system presented linear response, low hysteresis, with determination coefficient of 0.9997, precision better than 0,84% and resolution less than 0.5 N. The Measurements are presented on a computer screen and easier visualization to specialists, mainly physicians, physiotherapists and occupational therapists. Using the system, the distribution of weight in the plantar region of 100 normal subjects and 10 hemiplegic patients was investigated. There were determined the relationship between weight distribution on the right and left forefoot, hemiplegic patients and normal patients, with the implemented system. © 2013 Springer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)