23 resultados para Bulk Metallic Glass
Resumo:
The lattice dynamical studies of the metallic glass Ca70Mg30 by Bhatia and Singh on their model contained two shortcomings, firstly the electron-ion interaction matrix was wrong and secondly, the numerical value of the bulk modulus of the electron gas was accepted arbitrarily. By modifying the electron-ion dynamical matrix and determining all the model parameters from the experimental data, we made a fresh study of the lattice dynamics of Ca70Mg30 and compared it to the earlier studies of Bhatia and Singh and also with experimental phonons.
Resumo:
Fluoroindate glasses containing 1, 2, 3, and 4 mol% ErF3 were prepared in a dry box under an argon atmosphere. Absorption spectra of these glasses at room temperature were obtained. The Judd-Ofelt parameters Ωλ (λ = 2, 4, 6) for f-f transitions of Er3+ ions as well as transition probabilities, branching ratios, radiative lifetimes, and peak cross-sections for stimulated emission of each band were determined. The concentration effect on the intensities is analyzed. The optical properties of the fluoroindate glasses doped with Er3+ ions are compared with those of other glasses described in the literature. © 1995.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Formation of antimony polyphosphate using Sb2O3 and/or (NH4)2HPO4 and NH4H 2PO4 as starting materials has been simulated by thermal analysis technique. The elimination of water and ammonia molecules induced by heating leads to the formation of intermediate ammonium polyphosphate, which subsequently reacts with Sb2O3. Morphologically, vitreous Sb(PO3)3 is composed of plaques having irregular shapes. Infrared spectra and NMR study is consistent with tetrametaphosphate anion arrangement. The compound is thermally unstable and may be recommended as a donor of -O-P-O- linkers in the preparation of special phosphate glasses. © 2005 Akadémiai Kiadó, Budapest.
Resumo:
Two series of glasses with composition (mol%) 70PbGeO3- 15PbF2-15CdF2, the first one with different Tm 3+ contents (0.2, 0.4, 0.6 and 0.8 mol%) and the second one with 0.2 mol% Tm3+ and different Ho3+ contents (0.1, 0.5, 1.0 and 1.5 mol%), have been prepared and some of their spectroscopic properties studied. Absorption in the visible-near infrared and emission in the near infrared region of the electromagnetic spectrum have been obtained. Concerning emission at the 1.4-1.5 μm region, optimization of rare earth ions content leads to 0.2 and 0.5 mol% for Tm3+ and Ho3+, respectively. We discuss potential application of these compositions. © 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work, we present a new photochromic tungstate based glass which have both absorption coefficient and refractive index modified under laser exposure. The photosensitive effect is superficial under ultraviolet (UV) irradiation but occurs in the entire volume of the glass under visible irradiation. The effect can be obtained in any specific point inside the volume using an infrared femtosecond laser. In addition, the photosensitive phenomenon can be erased by specific heat treatment. This glass can be useful to substitute actual data storage supports and is a promising material for 3-dimensional (3D) and holographic optical storage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, differential scanning calorimetry (DSC) was used to study the mechanism of crystallization of 5OP(2)O(5-)27.8Na(2)O-16ZnO-6.2Al(2)O(3) glass. DSC measurements were performed on bulk and powdered glasses with different particle size. The curve for bulk glass shows one crystallization peak while powdered glasses presented two distinct crystallization peaks. Based on DSC studies, the activation energies obtained were 336 +/- 6 and 213 +/- 3 U mol(-1), associated with first and second crystallization peaks, respectively. Analyzing the DSC parameters as a function of particle size, the Avrami n parameter suggests that the peak at low temperature may be associated with surface crystallization while the peak at high temperature is associated with bulk crystallization. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the effect of airborne-particle abrasion and mechanico-thermal cycling on the flexural strength of a ceramic fused to cobalt-chromium alloy or gold alloy.Materials and Methods: Metallic bars (n = 120) were made (25 mm x 3 mm x 0.5 mm): 60 with gold alloy and 60 with Co-Cr. At the central area of the bars (8 mm x 3 mm), a layer of opaque ceramic and then two layers of glass ceramic (Vita VM13, Vita Zahnfabrick) were fired onto it (thickness: 1 mm). Ten specimens from each alloy group were randomly allocated to a surface treatment [(tungsten bur or air-particle abrasion (APA) with Al(2)O(3) at 10 mm or 20 mm away)] and mechanico-thermal cycling (no cycling or mechanically loaded 20,000 cycles; 10 N distilled water at 37 degrees C and then thermocycled 3000 cycles; 5 degrees C to 55 degrees C, dwell time 30 seconds) combination. Those specimens that did not undergo mechanico-thermal cyclingwere stored inwater (37 degrees C) for 24 hours. Bond strength was measured using a three-point bend test, according to ISO 9693. After the flexural strength test, failure types were noted. The data were analyzed using three factor-ANOVA and Tukey's test (alpha = 0.05).Results: There were no significant differences between the flexural bond strength of gold and Co-Cr groups (42.64 +/- 8.25 and 43.39 +/- 10.89 MPa, respectively). APA 10 and 20 mm away surface treatment (45.86 +/- 9.31 and 46.38 +/- 8.89 MPa, respectively) had similar mean flexural strength values, and both had significantly higher bond strength than tungsten bur treatment (36.81 +/- 7.60 MPa). Mechanico-thermal cycling decreased the mean flexural strength values significantly for all six alloy-surface treatment combinations tested when compared to the control groups. The failure type was adhesive in the metal/ceramic interface for specimens surface treated only with the tungsten bur, and mixed for specimens surface treated with APA 10 and 20 mm.Conclusions: Considering the levels adopted in this study, the alloy did not affect the bond strength; APA with Al(2)O(3) at 10 and 20 mm improved the flexural bond strength between ceramics and alloys used, and the mechanico-thermal cycling of metal-ceramic specimens resulted in a decrease of bond strength.
Resumo:
Objectives. This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy.Methods. Metallic frameworks (diameter: 5 min, thickness: 4 mm) (N = 96, n = 12 per group) were cast in cpTi and gold alloy, airborne particle abraded with 150 mu m aluminum oxide. Low-fusing glassy matrix ceramics and a conventional feldspathic ceramic were fired onto the alloys (thickness: 4mm). Four experimental groups were formed; Gr1 (control group): Vita Omega 900-Au-Pd alloy; Gr2: Ticeram-cpTi; Gr3: Super Porcelain Ti-22-cpTi and G4: Vita Titankeramik-cpTi. While half of the specimens from each ceramic-metal combination were randomly tested without aging (water storage at 37 C for 24h only), the other half were first thermocycled (6000 cycles, between 5 and 55 C, dwell time: 13 s) and then mechanically loaded (20,000 cycles under SON load, immersion in distilled water at 37 C). The ceramic-alloy interfaces were loaded under shear in a universal test machine (cross-head speed: 0.5 mm/min) until failure occur-red. Failure types were noted and the interfaces of the representative fractured specimens from each group were examined with stereo microscope and scanning electron microscope (SEM). in an additional study (N = 16, n = 2 per group), energy dispersive X-ray spectroscopy (EDS) analysis was performed from ceramic-alloy interfaces. Data were analyzed using ANOVA and Tukey's test.Results. Both ceramic-metal combinations (p < 0.001) and aging conditions (p < 0,001) significantly affected the mean bond strength values. Thermal- and mechanical-cycling decreased the bond strength (MPa) results significantly for Gr3 (33.4 +/- 4.2) and Gr4 (32.1 +/- 4.8) when compared to the non-aged groups (42.9 +/- 8.9, 42.4 +/- 5.2, respectively). Gr1 was not affected significantly from aging conditions (61.3 +/- 8.4 for control, 60.7 +/- 13.7 after aging) (p > 0.05). Stereomicroscope images showed exclusively adhesive failure types at the opaque ceramic-cpTi interfacial zone with no presence of ceramic on the substrate surface but with a visible dark titanium oxide layer in Groups 2-4 except Gr1 where remnants of bonder ceramic was visible. EDS analysis from the interfacial zone for cpTi-ceramic groups showed predominantly 34.5-85.1% O(2) followed by 1.1-36.7% Aland 0-36.3% Si except for Super Porcelain Ti-22 where a small quantity of Ba (1.4-8.3%), S (0.7%) and Sn (35.3%) was found. In the Au-Pd alloy-ceramic interface, 56.4-69.9% O(2) followed by 15.6-26.2% Si, 3.9-10.9% K, 2.8-6% Na, 4.4-9.6% Al and 0-0.04% Mg was observed.Significance. After thermal-cycling for 6000 times and mechanical-cycling for 20,000 times, Triceram-cpTi combination presented the least decrease among other ceramic-alloy combinations when compared to the mean bond strength results with Au-Pd alloy-Vita Omega 900 combination. (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne particle abrasion at a designated area of the frameworks (8 x 3 mm). Bonder and opaque ceramic were applied on the frameworks, and then the corresponding ceramic (Triceram, Super Porcelain Ti-22, Vita Titankeramik) was fired onto them (thickness: 1 mm). Half of the specimens from each ceramic-metal combination were randomly tested without aging (only water storage at 37 degrees C for 24 hours), while the other half were mechanically loaded (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and thermocycled (3,000 cycles, between 5-55 degrees C, dwell time of 13 seconds). After the flexural strength test, failure types were noted. Mechanical and thermal cycling decreased the mean flexural strength values significantly (p<0.05) for all the three ceramic-cpTi combinations tested when compared to the control group. In all the three groups, failure type was exclusively adhesive at the opaque ceramic-cpTi interfacial zone with no presence of ceramic on the substrate surface except for a visible oxide layer.
Resumo:
Glasses with composition 60PbGeO(3)-10PbF(2)-30CdF(2) (mol%) have been obtained in the bulk form with a high stability against crystallization. After doping them with 0.5 mol% of Er3+ or Eu3+ and appropriate heat treatment transparent glass ceramics could be obtained. Electronic spectroscopy, X-ray diffraction and transmission electron microscopy measurements have been made. beta-PbF2: Er3+/Eu3+ Single crystals, 5-10 nm in size, are detected in the otherwise transparent composite medium, the size of the particles and absence of clustering allowing for the increased transparency of the final materials. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The conductivity of poly(p-phenylene sulfide) (PPS) amorphous samples sandwiched between metallic electrodes has been studied as a function of applied voltage, temperature, and electrode material. The voltage (U) dependence of the currents for electric fields within the range 10(3)-10(6) V/cm exhibits exp beta U-1/2 behavior with beta = beta(Schottky) below the glass transition temperature (T-g congruent to 90 degrees C), and beta = beta(Poole-Frenkel) above T-g. Coordinated temperature measurements of de currents with different metallic contacts and thermally stimulated currents (TSC) indicate, however, that the conductivity at T < T-g is consistent with the so-called ''anomalous'' Poole-Frenkel effect rather than the Schottky effect. Consequently, the p-type conductivity in amorphous PPS is proposed to be a bulk-limited process due to ionization of two different types of acceptor centers in the presence of neutral hole traps. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The nonlinear refractive index, n(2), of films based on the new glass system Sb(2)O(3)-Sb(2)S(3) was measured at 1064 nm with laser pulses of 15 ps, using a single-beam nonlinear image technique in presence of a phase object. The films were prepared from bulk glasses by RF-sputtering. A large value of n(2) = 3 x 10-(15) m(2)/W, which is three orders of magnitude larger than for CS(2), was determined. The result shows the strong potential of antimony-sulfide glass films for integrated nonlinear optics. (c) 2005 Elsevier B.V. All rights reserved.