152 resultados para Bleaching agent


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to assess the effect of bleaching agents (10% and 16% carbamide peroxide) on the roughness of two dental ceramics in vitro, and to analyze the surface by scanning electronic microscopy (SEM). Two bleaching agents (10% and 16%/Whiteness, FGM Gel) and two microparticle feldspathic ceramics (Vita VM7 and Vita VM13) were used. Forty disks of Vita VM7 and Vita VM13 ceramic were manufactured, measuring 4 mm in diameter and 4 mm high, in accordance with the manufacturers' recommendations, and were divided into 4 groups (n = 10): (1) VM7 + Whiteness 10%; (2) VM7 + Whiteness 16%; (3) VM13 + Whiteness 10%; (4) VM13 + Whiteness 16%. The bleaching agent was applied for 8 hours a day for 15 days and during the intervals the test specimens were stored in distilled water at 37 degrees C. The roughness (Ra) of the test specimens was evaluated before and after exposure to the bleaching agents using a laser roughness meter and the topographic description was analyzed by SEM. The statistical analysis of roughness data showed significant differences in the VM7 groups, using paired t-test, p = 0.05 (VM7 + Whiteness 10%: p = 0.002; VM7 + Whiteness 16%: p = 0.001) and two-sample t-test (VM7 p = 0.047), and no significant difference was found among VM13 groups. The qualitative SEM analysis showed different degrees of surface changes. The results suggest that the roughness of the tested ceramic surfaces increased after exposure to the bleaching agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the effect of low-level laser therapy (LLLT) on odontoblast-like MDPC-23 cells exposed to carbamide peroxide (CP 0.01 %-2.21 μg/mL of H2O2). The cells were seeded in sterile 24-well plates for 72 h. Eight groups were established according to the exposure or not to the bleaching agents and the laser energy doses tested (0, 4, 10, and 15 J/cm2). After exposing the cells to 0.01 % CP for 1 h, this bleaching solution was replaced by fresh culture medium. The cells were then irradiated (three sections) with a near-infrared diode laser (InGaAsP-780 ± 3 nm, 40 mW), with intervals of 24 h. The 0.01 % CP solution caused statistically significant reductions in cell metabolism and alkaline phosphate (ALP) activity when compared with those of the groups not exposed to the bleaching agent. The LLLT did not modulate cell metabolism; however, the dose of 4 J/cm2 increased the ALP activity. It was concluded that 0.01 % CP reduces the MDPC-23 cell metabolism and ALP activity. The LLLT in the parameters tested did not influence the cell metabolism of the cultured cells; nevertheless, the laser dose of 4 J/cm2 increases the ALP activity in groups both with and without exposure to the bleaching agent. © 2013 Springer-Verlag London.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: the purpose of this study was to investigate the penetration of a conventional adhesive material into enamel bleached with 16% carbamide peroxide and 38% hydrogen peroxide using optical light microscopy.Methods: Extracted human teeth were randomly divided into eight experimental groups with six specimens each, according to the bleaching material and time interval after bleaching and before the bonding procedure. Groups were designated as follows: control group, restorations in unbleached teeth; restorations performed immediately after bleaching; restorations performed 7 days after bleaching; restorations performed 14 days after bleaching; and restorations performed 30 days after bleaching. The length of resin tags was measured with an Axiophot photomicroscope at 400x magnification for the calculation of the proportion of tags of study groups compared to the respective control groups. Analysis of variance was applied for comparison between groups; data were transformed into arcsine (p < 0.05).Results: the specimens of experimental groups, in which restorations were performed 7, 14, and 30 days after bleaching, showed better penetration of adhesive material into enamel than specimens restored immediately after bleaching. There was no statistically significant difference between the bleaching materials employed or in the interaction between bleaching agent and time interval.Conclusions: This suggests that a time interval of at least 7 days should be allowed between enamel bleaching and placement of adhesive bonding agents for accomplishment of composite resin restorations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To evaluate the trans-enamel and trans-dentinal cytotoxic effects of a 35% H2O2 bleaching gel on an odontoblast-like cell lines (MDPC-23) after consecutive applications.Fifteen enamel/dentine discs were obtained from bovine central incisor teeth and placed individually in artificial pulp chambers. Three groups (n = 5 discs) were formed according to the following enamel treatments: G1: 35% H2O2 bleaching gel (15 min); G2: 35% H2O2 bleaching gel (15 min) + halogen light (20 s); G3: control (no treatment). After repeating the treatments three consecutive times, the extracts (culture medium + gel components that had diffused through enamel/dentine discs) in contact with the dentine were collected and applied to previously cultured MDPC-23 cells (50 000 cells cm(-2)) for 24 h. Cell metabolism was evaluated by the MTT assay and data were analysed statistically (alpha = 5%; Kruskal-Wallis and Mann-Whitney U-test). Cell morphology was analysed by scanning electron microscopy.Cell metabolism decreased by 92.03% and 82.47% in G1 and G2 respectively. G1 and G2 differed significantly (P < 0.05) from G3. Regardless of halogen light activation, the application of the bleaching gel on the cultured odontoblast-like cells caused significantly more severe cytotoxic effects than those observed in the nontreated control group. In addition, significant morphological cell alterations were observed in G1 and G2.After three consecutive applications of a 35% H2O2 bleaching agent, the diffusion of the gel components through enamel and dentine caused severe toxic effects to cultured pulp cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: To compare the fracture resistance of bovine teeth after intracoronal bleaching with sodium percarbonate (SPC) or sodium perborate (SP) mixed with water or 20% hydrogen peroxide (HP). Materials and methods: Fifty extracted bovine teeth were divided into four experimental groups (G1G4) and one control (n = 10) after endodontic treatment. Following root canal obturation, a glass ionomer barrier was placed at the cementoenamel junction. After that, the pulp chambers were filled with: G1 SP with water; G2 SP with 20% HP; G3 SPC with water; and G4 SPC with 20% HP. No bleaching agent was used in the control group. Coronal access cavities were sealed with glass ionomer and specimens were immersed in artificial saliva. The bleaching agents were replaced after 7 days, and teeth were kept in artificial saliva for an additional 7 days, after which the pastes were removed and the coronal access cavities were restored with glass ionomer. Crowns were subjected to compressive load at a cross head speed of 0.5 mm min-1 applied at 135 degrees to the long axis of the root by an EMIC DL2000 testing machine, until coronal fracture. Data were statistically analysed by anova and Tukey test. Results: No differences in fracture resistance were observed between the experimental groups (P > 0.05). However, all experimental groups presented lower fracture resistance than the control group (P < 0.05). Conclusion: SPC and SP led to equal reduction on fracture resistance of dental crowns, regardless of being mixed with water or 20% HP.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the influence of different light sources for in-office bleaching on surface microhardness of human enamel. One hundred and five blocks of third molars were distributed among seven groups. The facial enamel surface of each block was polished and baseline Knoop microhardness of enamel was assessed with a load of 25 g for 5 s. Subsequently, the enamel was treated with 35% hydrogen peroxide bleaching agent and photo-activated with halogen light (group A) during 38 s, LED (group B) during 360 s, and high intensity diode laser (group C) during 4 s. The groups D (38 s), E (360 s), and F (4 s) were treated with the bleaching agent without photo-activated. The control (group G) was only kept in saliva without any treatment. Microhardness was reassessed after 1 day of the bleaching treatment, and after 7 and 21 days storage in artificial saliva. The mean percentage and standard deviation of microhardness in Knoop Hardness Number were: A 97.8 +/- 13.1 KHN; B 95.5 +/- 12.7 KHN; C 84.2 +/- 13.6 KHN; D 128.6 +/- 20.5 KHN; E 133.9 +/- 14.2 KHN; F 123.9 +/- 14.2 KHN; G 129.8 +/- 18.8 KHN. Statistical analysis (p < 0.05; Tukey test) showed that microhardness percentage values were significantly lower in the groups irradiated with light when compared with the non-irradiated groups. Furthermore, the non-irradiated groups showed that saliva was able to enhance the microhardness during the measurement times. The enamel microhardness was decreased when light sources were used during the bleaching process and the artificial saliva was able to increase microhardness when no light was used.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: Our goal was to investigate the surface temperature variations in the cervical region via infrared thermography, as well as the temperature within the pulp chamber via thermocouples, of mandibular incisors when subjected to dental bleaching using two different 35% hydrogen peroxide gels, red (HP) and green (HPM), when activated by halogen light (HL) and LED light.Background Data: Temperatures increases of more than 5.5 degrees C are considered to be potentially threatening to pulp vitality, while those higher than 10 degrees C can result in periodontal injury.Materials and Methods: Tooth samples were randomly divided into four groups (n = 10 each), according to the bleaching agent and catalyst light source used.Results: Mean values and standard deviations of the temperature increases inside the pulp chamber in the HL groups were 4.4 degrees +/- 2.1 degrees C with HP, and 4.5 degrees +/- 1.2 degrees C with HPM; whereas in the groups using LED light, they were 1.4 degrees +/- 0.3 degrees C for HP, and 1.5 degrees +/- 0.2 degrees C for HPM. For the root surfaces, the maximum temperature increases in the groups irradiated with HL were 6.5 degrees +/- 1.5 degrees C for HP, and 7.5 degrees +/- 1.1 degrees C with HPM; whereas in the groups irradiated with LED light, they were 2.8 degrees +/- 0.7 degrees C with HP, and 3 degrees +/- 0.8 degrees C with HPM. There were no statistically significant differences in pulp and surface temperature increases between the groups using different gels, although the mean temperature increases were significantly higher for the groups irradiated with HL when compared with those irradiated with the LED light (p < 0.05 with Tukey's test).Conclusion: LED light may be safe for periodontal and pulp tissue when using this method, but HL should be used with care.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To quantify the amount of peroxide penetration from the pulp chamber to the external surface of teeth during the walking bleaching technique. Methods: Seventy-two bovine lateral incisors were randomly divided over five experimental groups and one control (n = 12 per group): (1) 35% hydrogen peroxide (HP); (2) 35% carbamide peroxide (CP); (3) sodium perborate (SP); (4) (HP+SP); (5) (CP+SP) and (6) Control (CG), deionized water. All groups were treated according to the walking bleach technique. After 7 days at 37 degrees C in an acetate buffer solution, 100 mu l violet leukocrystal coloring and 50 mu l peroxidase was added, producing a blue stain that could be measured in a spectrophotometer and then converted into peroxide mu g/ml. Results: G5 exhibited the greatest penetration, while G2 and G3 produced the lowest values. All bleaching agents penetrated from the pulp chamber to the external root surface. There was a direct correlation between the presence of oxidative agents and penetration potential. Sodium perborate in distilled water was less oxidative and appeared to be the least aggressive bleaching agent. (Am J Dent 2010;23:171-174).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study assessed alterations on bovine enamel after excessive bleaching. Coronal portions of bovine teeth (n = 30) were sectioned and divided into three groups (n = 10 per group). The coronal parts were further cut incisocervically into two halves. While one half received no bleaching (control), the other half was subjected to either one (group 1), three (group 2), or five bleaching sessions (group 3) with 35% hydrogen peroxide. The enamel surfaces were then analyzed using scanning electron microscopy and energy dispersive x-ray spectroscopy (EDS). Fxcessive bleaching affected the surface morphology and chemistry of the bovine enamel. EDS analysis showed the highest decrease in calcium ion percentages in groups 2 and 3 when compared to their nonbleached halves. Oxygen and phosphorus percentages were comparable on both the control and bleached enamel, regardless of the number of bleaching sessions. Consecutive bleaching sessions with 35% hydrogen peroxide may lead to morphologic and specific elemental changes when performed in a short period of time. Calcium ion percentages may decrease when this bleaching agent is used for more than one session. Int J Prosthodontics 2010;23:29-32.