54 resultados para Bismuth based powders
Resumo:
Zirconia-based ceramics that retain their metastable tetragonal phase at room temperature are widely studied due to their excellent mechanical and electrical properties. When these materials are prepared from precursor nanopowders with high specific surface areas, this phase is retained in dense ceramic bodies. In this work, we present a morphological study of nanocrystalline ZrO2-2.8 mol% Y2O3 powders synthesized by the gel-combustion method, using different organic fuels - alanine, glycine, lysine and citric acid - and calcined at temperatures ranging from 873 to 1173 K. The nanopore structures were investigated by small-angle X-ray scattering. The experimental results indicate that nanopores in samples prepared with alanine, glycine and lysine have an essentially single-mode volume distribution for calcination temperatures up to 1073 K, while those calcined at 1173 K exhibit a more complex and wider volume distribution. The volume-weighted average of the nanopore radii monotonically increases with increasing calcination temperature. The samples prepared with citric acid exhibit a size distribution much wider than the others. The Brunauer-Emmett-Teller technique was used to determine specific surface area and X-ray diffraction, environmental scanning electron microscopy and transmission electron microscopy were also employed for a complete characterization of the samples.
Resumo:
Bi4Ti4O15 [BBT], a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of BaTiO3 [BT] and Bi4Ti3O12 [BIT] obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. BBT ceramics were sintered at 1100C for 4 h without pre-calcination step within heating rate 10C/min. The formation of phase and crystal structure of BT, BIT and BBT were approved using X-ray analysis. The morphology of obtained powders and microstructure were exhamined using scanning electron microscopy. The electrical properties of sintered samples were carried out.
Resumo:
This paper reports a study of influence of Cr concentration on the electrical properties and microstructure of SnO2-based powders doped with Mn and Nb, prepared by an organic route (Pechini method). All the samples were compacted into discs and sintered at 1300 degrees C for 3h, resulting in ceramics with relative density varying between 78% and 98%. The powders were characterized by X-ray diffraction analysis. Impedance spectroscopy characterization indicated that the conductivity decreases as Cr concentration increases, probably due to Cr segregation at grain boundaries, which reduces grain size, increasing the number of resistive boundaries.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Perovskite, single multiferroic bismuth ferrite was prepared by two chemical methods: auto-combustion and soft chemical route. Influence of different fuels and complexing agents and thermal treatment on purity of bismuth ferrite powders and density of bismuth ferrite ceramics were investigated. X-ray diffraction technique (XRD) indicated that optimal temperatures and times for calcination and sintering are 600 degrees C for 2 h and 800 degrees C for 1 h with quenching, respectively. Scanning electron microscopy (SEM) analysis showed that soft route synthesized samples formed softer agglomerates and smaller grains with less secondary phases. Powders and pellets were characterized by Brunauer Emmett Teller (BET) specific surface area analysis, particle size distribution, Fourier transform infrared spectroscopy (FT-IR), dilatometry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), dielectric and magnetic measurements. Resistivity and origin of electrical resistance were studied by means of impedance measurements. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Since the discovery of YBaCuO, experiments have shown that its superconducting properties are strongly affected by the oxygen content. More recently, anelastic relaxation measurements in La2CuO4+δ, showed that the decrease in the oxygen content can be related to two events. One is the decrease in mobility between two adjacent CuO planes, and the other is the increase in the number of tilting patterns of the CuO6 octahedra. In the case of the bismuth-based ceramic, it is known that the oxygen content, within some limits, does not affect its superconducting properties. In order to evaluate the mobility and the effect of the oxygen content on this material we have prepared BSCCO ceramic and tested regarding its internal friction and electrical resistivity as a function of the temperature while the oxygen content was being reduced by a sequence of vacuum annelaing at 620 K. The samples were prepared in the Bi:Sr:Ca:Cu = 2212 and 2223 proportion, using powder obtained by the sol-gel route and conventional solid state reaction. The anelastic relaxation measurements were performed using a torsion pendulum operating with frequency about 15-35 Hz between 77 to 700 K. The diffraction pattern of the as sintered and the vacuum annealed material were also presented. The results have shown complex anelastic relaxation structures that were associated to the jump of interstitial oxygen atoms between two adjacent CuO planes. The vacuum annealing showed to be deleterious to the critical temperature of the superconducting ceramic.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)