107 resultados para B physics
Resumo:
CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and tau's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Current-voltage measurements performed on bulk AlxGa1-xAs equipped with Au/Ge/Ni contacts reveal surprising deviations from ohmic behaviour when the temperature is lowered to that of liquid nitrogen. Significant differences are observed between samples with x = 0.3 (direct band-gap material) and x = 0.5 (indirect band-gap material). The dominant states of the donor atoms Si (doping) or Ge are found to be responsible for such behaviour. Evidence for the existence of an effective-mass X-valley metastable state is also presented.
Resumo:
We present a compact expression for the field theoretical actions based on the symplectic analysis of coadjoint orbits of Lie groups. The final formula for the action density α c becomes a bilinear form 〈(S, 1/λ), (y, m y)〉, where S is a 1-cocycle of the Lie group (a schwarzian type of derivative in conformai case), λ is a coefficient of the central element of the algebra and script Y sign ≡ (y, m y) is the generalized Maurer-Cartan form. In this way the action is fully determined in terms of the basic group theoretical objects. This result is illustrated on a number of examples, including the superconformal model with N = 2. In this case the method is applied to derive the N = 2 superspace generalization of the D=2 Polyakov (super-) gravity action in a manifest (2, 0) supersymmetric form. As a byproduct we also find a natural (2, 0) superspace generalization of the Beltrami equations for the (2, 0) supersymmetric world-sheet metric describing the transition from the conformal to the chiral gauge.
Resumo:
We show that the ground-state energy of the q-deformed Lipkin-Meshkov-Glick Hamiltonian can be estimated by q-deformed coherent states. We also use these coherent states to analyse qualitatively the suppression of the second order ground-state energy phase transition of this model. © 1993.
Resumo:
Studies of the band gap properties of one-dimensional superlattices with alternate layers of air and left-handed materials are carried out within the framework of Maxwell's equations. By left-handed material, we mean a material with dispersive negative electric and magnetic responses. Modeling them by Drude-type responses or by fabricated ones, we characterize the n(ω) = 0 gap, i.e., the zeroth order gap, which has been predicted and detected. The band structure and analytic equations for the band edges have been obtained in the long wavelength limit in case of periodic, Fibonacci, and Thue-Morse superlattices. Our studies reveal the nature of the width of the zeroth order band gap, whose edge equations are defined by null averages of the response functions. Oblique incidence is also investigated, yielding remarkable results. © 2010 Springer Science+Business Media B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A renormalization-group calculation of the temperature-dependent nuclear spin relaxation rate for a magnetic impurity in a metallic host is reported. The calculation follows a simplified procedure, which produces accurate rates in the low-temperature Fermi-liquid regime, although yielding only qualitatively reliable results at higher temperatures. In all cases considered, as the temperature T diminishes, the rates peak before decaying linearly to zero in the Fermi-liquid range. For T → 0, the results agree very well with Shiba's expression relating the low-temperature coefficient of the relaxation rate to the squared zero-temperature susceptibility. In the Kondo limit, the enhanced susceptibility associated with the Kondo resonance produces a very sharp peak in the relaxation rate near the Kondo temperature. © 1991.
Resumo:
The numerical renormalization-group method was originally developed to calculate the thermodynamical properties of impurity Hamiltonians. A recently proposed generalization capable of computing dynamical properties is discussed. As illustrative applications, essentially exact results for the impurity specttral densities of the spin-degenerate Anderson model and of a model for electronic tunneling between two centers in a metal are presented. © 1991.
Resumo:
The vacuum energy of QED, as a function of the coupling constant α, is shown to have an absolute minimum at the critical coupling αc=π/3. The effect of chiral symmetry breaking diminishes as the coupling is increased. We argue that these aspects of the vacuum energy shall remain unaltered beyond the ladder approximation.
Resumo:
A novel method to probe the diverse phases for the extended Hubbard model (EHM), including the correlated hopping term, is presented. We extend an effective medium approach [1] to a bipartite lattice, allowing for charge- and/or spin-ordered phases. We calculate the necessary correlation functions to build the EHM phase diagram.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A search for new physics is performed using isolated same-sign dileptons with at least two b-quark jets in the final state. Results are based on a 4.98 fb -1 sample of protonproton collisions at a centre-of-mass energy of 7TeV collected by the CMS detector. No excess above the standard model background is observed. Upper limits at 95% confidence level are set on the number of events from non-standard-model sources. These limits are used to set constraints on a number of new physics models. Information on acceptance and efficiencies are also provided so that the results can be used to confront additional models in an approximate way. © 2012 SISSA.
Resumo:
A search for new physics is performed using events with isolated same-sign leptons and at least two bottom-quark jets in the final state. Results are based on a sample of proton-proton collisions collected at a center-of-mass energy of 8 TeV with the CMS detector and corresponding to an integrated luminosity of 10.5 fb-1. No excess above the standard model background is observed. Upper limits are set on the number of events from non-standard-model sources and are used to constrain a number of new physics models. Information on acceptance and efficiencies is also provided so that the results can be used to confront an even broader class of new physics models. © 2013 CERN for the benefit of the CMS collaboration.
Resumo:
The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a. top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesis of TeV scale strings and D brane models. An overview of these possibilities is presented in the spirit that it will serve as a companion to the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideas stands the test of the LHC data will govern the course of particle physics in the subsequent decades.