192 resultados para Antioxidant defenses
Resumo:
To study the effects of diclofenac, a nonselective nonsteroidal anti-inflammatory drug (NSAID), on lipid profile, oxidized low-density-lipoprotein (Ox-LDL), serum antioxidant defenses and markers of oxidative stress, male Wistar rats were divided into two groups (n = 10): (C) receiving intramuscularly a single daily dose of saline (NaCl 0.9%), and (AI) receiving intramuscularly a single daily dose of 10 mg/kg diclofenac sodium (C14H10C12NNaO2). After 28 days diclofenac-treated rats had lower Ox-LDL, apoprotein B (apo-B), apo-B/LDL-cholesterol and lipid hydroperoxide than C. Total antioxidant substances and superoxide dismutase were increased in diclofenac-treated rats, while no significant changes were observed in catalase, glutathione peroxidase and nitric oxide. A perincubation test done to examine the possibility of mechanism-based activation showed that diclofenac had no effect on maximal superoxide dismutase velocity, but significantly reduced the Michaelis-Menten (K-M) constant, indicating that diclofenac induced SOD activation increasing substrate linkage affinity to the enzyme-catalytic site. In conclusion, diclofenac had beneficial effects decreasing Ox-LDL and improving antioxidant defense. It appears that the application of this agent may be feasible and beneficial for serum antioxidant protection, which certainly would bring new insights on dyslipidemia control. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: A nutrition experiment was utilized to investigate the effects of two levels of dietary copper (Cu) supplementation on lipid profile and antioxidant defenses in serum of rats. Methods: Male Wistar rats (180-200 g; n = 10) were divided into three groups: control group (A), fed a basal diet with 6 mu g Cu/g, and rats fed a basal diet with Cu (CuSO4) supplementation from aqueous solutions, for 4 weeks at the final concentrations of 2 mg Cu/rat (B) and 3 mg Cu/rat (C). Results: No significant changes were observed in final body weight, body weight gain, food consumption, total serum protein and high-density lipoprotein. Cu supplementation reduced the triacylglycerol (TG), total cholesterol and low-density lipoprotein (LDL-C). The LDL-C/TG ratio and total antioxidant substances (TAS) were higher in (B) and (C) groups than in (A) group. There was a positive correlation between Cu supplementation and ceruloplasmin levels. The markers of oxidative stress, lipid hydroperoxide and lipoperoxide were decreased with Cu supplementation. No alterations were observed in superoxide dismutase, indicating saturation of Cu enzyme site. The glutathione peroxidase activities (GSH-Px) were increased in both Cu-supplemented groups. Considering that a copper-selenium interaction can affect mineral availability of both elements, the effects of Cu on TAS and GSH-Px activities were associated with increased selenium disposal. Conclusions: Dietary Cu supplementation had beneficial effects on lipid profile by improving endogenous antioxidant defenses and decreasing the oxidative stress in vivo. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
The present study examined the interaction of hypercaloric diet (HD) and physical exercise on lipid profile and oxidative stress in serum and liver of rats. Male Wistar rats (60-days-old) were fed with a control (C) and hypercaloric diet (H). Each of the two dietary groups (C and H) was divided into three subgroups (n = 8), sedentary (CS and HS), exercised 2 days a week (CE2 and HE2) and exercised 5 days a week (CE5 and HE5). The swimming was selected as a model for exercise performance. After 8-weeks exercised rats showed decreased lactate dehydrogenase serum activities, demonstrating the effectiveness of the swimming as an aerobic-training protocol. Exercise 5-days a week reduced the body weight gain. Triacylglycerol (TG) and very low-density lipoprotein (VLDL-C) were increased in HD-fed rats. HE5 and CE5 rats had decreased TG, VLDL-C and cholesterol. HE2 rats had enhanced high-density lipoprotein (HDL-C) in serum. No alterations were observed in lipid hydroperoxide (LH), while total antioxidant substances (TAS) were increased in serum of exercised rats. HD-fed rats had hepatic TG accumulation. Superoxide dismutase activities were increased and catalase was decreased in liver of exercised rats. The interaction of HD and physical exercise reduced TAS and enhanced LH levels in hepatic tissue. In conclusion, this study confirmed the beneficial effect of physical exercise as a dyslipidemic-lowering component. Interaction of HD and physical exercise had discrepant effects on serum and liver oxidative stress. The interaction of HID and physical exercise reduced the oxidative stress in serum. HD and physical exercise interaction had pro-oxidant effect on hepatic tissue, suggesting that more studies should be done before using physical exercise as an adjunct therapy to reduce the adverse effects of HD. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present work was to compare colonic mucosa and plasmatic oxidative stress measured concomitantly and with different degrees of injury in rats with colitis induced by trinitrobenzene sulfonic acid. Three groups were studied: control group, colitis group, and colitis exacerbated by diclofenac. Enzymatic markers of colon injury showed enhanced activity in both groups with colitis. The colitis group treated with diclofenac presented higher colonic damage score than the other groups. In both groups with colitis, higher values of tert butyl hydroperoxide-initiated-chemiluminescence and thiobarbituric acid-reactive substances in tissue and decreased total radical-trapping antioxidant potential (TRAP) levels in plasma were found. In conclusion, independently of the degree of colonic mucosa injury and inflammation, oxidative stress in tissue occurs as a consequence of pro-oxidants increase, and is not explained by a reduction of antioxidant defenses. In both conditions, TRAP determination decreases in plasma, but not in tissue.
Resumo:
The aim of this study was to investigate the effects of acute glyphosate (active ingredient) exposure on the oxidative stress biomarkers and antioxidant defenses of a hybrid surubim (Pseudoplatystoma sp). The fish were exposed to different herbicide concentrations for 96 h. The thiobarbituric acid-reactive substances (TBARS), protein carbonyls and antioxidant responses were verified. The 15 mg a.p L-1 of herbicide resulted in the death of 50% of the fish after 96 h. An increase in liver and muscle TBARS levels was observed when fish were exposed to the herbicide. The protein carbonyl content was also increased in the liver (4.5 mg a.p L-1 concentration) and brain (2.25 mg a.p L-1 concentration). The antioxidant activities decreased in the liver and brain after exposure to herbicide. Levels of ascorbic acid in the liver (2.25 mg a.p L-1 and 4.5 mg a.p L-1 concentrations) and brain (2.25 mg a.p L-1 concentration) were increased post-treatment. Levels of total thiols were increased in the liver and brain (2.25 mg L-1 and 7.5 mg a.p L-1, respectively). Glyphosate exposure, at the tested concentrations affects surubim health by promoting changes that can affect their survival in natural environment. Some parameters as TBARS and protein carbonyl could be early biomarkers for Roundup exposure in this fish species. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Patients with neurological disorders have an increased risk of oral and systemic diseases due to compromised oral hygiene. If patients lose the ability to swallow and chew food as a result of their disorder, enteral nutrition is often utilized. However, this type of feeding may modify salivary antioxidant defenses, resulting in increased oxidative damage and the emergence of various diseases. The aim of this study was to evaluate the effects of enteral nutrition on biochemical parameters in the unstimulated whole saliva composition of patients with neurological disorders. For this, enzymatic (superoxide dismutase - SOD; glutathione peroxidase - GPx) and non-enzymatic (uric acid; ferric ion reducing antioxidant power - FRAP) antioxidant activity, as well as a marker for oxidative damage (thiobarbituric acid reactive substances - TBARS) were analyzed. Unstimulated whole saliva was collected from 12 patients with neurological disorders and tube-feeding (tube-fed group - TFG), 15 patients with neurological disorders and normal feeding via the mouth (non-tube-fed group - NTFG), and 12 volunteers without neurological disorders (control group - CG). The daily oral hygiene procedures of TFG and NTFG patients were similar and dental care was provided monthly by the same institution's dentist. All patients exhibited adequate oral health conditions. The salivary levels of FRAP, uric acid, SOD, GPx, TBARS, and total protein were compared between studied groups. FRAP was increased (p < 0.05) in the NTFG (4651 +/- 192.5 mmol/mL) and the TFG (4743 +/- 116.7 mmol/mL) when compared with the CG (1844 +/- 343.8 mmol/mL). GPx values were lower (p < 0.05) in the NTGF (8.24 +/- 1.09 mmol/min/mg) and the TFG (8.37 +/- 1.60 mmol/min/mg) than in the CG (15.30 +/- 2.61 mmol/min/mg). Uric acid in the TFG (1.57 +/- 0.23 mg/dL) was significantly lower than in the NTFG (2.34 +/- 0.20 mg/dL) and the CG (3.49 +/- 0.21 mg/dL). Protein was significantly lower in the TFG (5.35 +/- 0.27 g/dL) than in the NTFG (7.22 +/- 0.57 g/dL) and the CG (7.86 +/- 0.54 g/dL). There was no difference in the salivary flow rate and SOD between groups. Enteral nutrition in patients with neurological disorders was associated with lower oxidative damage, resulting in increased salivary. antioxidant capacity. These results emphasize the importance of oral care for this population to prevent oral and systemic diseases. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need to adopt an individualized diet for each athlete performing a specific sport or in a specific period of training, clinically supervised with inclusion of blood analysis and physiological tests, in a comprehensive nutritional assessment. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
A anomalia do epicarpo da goiaba, comumente relatada por agricultores e técnicos como o anelamento juvenil da goiaba, tem causado preocupação devido à desinformação sobre o assunto. O objetivo deste estudo foi analisar quimicamente as concentrações de substâncias fenólicas e carotenoides na região do epicarpo de goiabas afetadas pelo anelamento, visando a caracterizar essa anomalia previamente relatada. Foram analisadas substâncias fenólicas (taninos, flavonas/flavonóis, antocianinas e fenóis totais) e carotenoides em epicarpos de frutos verdes e maduros de goiabeiras cv. Paluma, com e sem anomalia. O delineamento experimental adotado foi o inteiramente casualizado, sendo estabelecidos seis tratamentos com o epicarpo dos frutos maduro sem anomalia na região inferior (FMSI); frutos maduros sem injuria na região superior (FMSS); frutos verdes sem anomalia na região inferior (FVSI); frutos verdes sem anomalia na região superior (FVSS); frutos verdes com anomalia na região inferior (FVCI); frutos verdes com anomalia na região superior (FVCS). Dentre as substâncias analisadas, os carotenoides, os taninos e os fenóis totais mostram indicativos para a caracterização do anelamento. Tanto substâncias fenólicas quanto carotenoides apresentam propriedades antioxidantes e, dessa forma, poderiam estar relacionadas à defesa antioxidante causada por um fator de estresse ainda desconhecido, que promove o anelamento característico apresentado pelas goiabas.
Resumo:
Purpose. There is considerable evidence that cellular oxidative stress caused by hyperglycemia plays an important role in the genesis and evolution of chronic diabetic lesions. In this study, we determined the effectiveness of pancreas transplantation (PT) in preventing the imbalance caused by excessive production of reactive oxygen species over antioxidant defenses in lungs of rats rendered diabetic by alloxan injection.Methods. Sixty inbred male Lewis rats, weighing 250-280 g, were randomly assigned to 3 experimental groups: NC, 20 nondiabetic control rats; DC, 20 untreated diabetic control rats; and PT, 20 diabetic rats that received syngeneic PT from normal donor Lewis rats. Each group was further divided into 2 subgroups of 10 rats each which were killed after 4 and 12 weeks of follow-up. Plasma glucose, glycosylated hemoglobin, and insulin levels were determined in all rats. Lipid hydroperoxide (LPO) concentrations and enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were measured in the pulmonary tissue of all rats.Results. The DC rats showed elevated blood glucose and glycosylated hemoglobin levels, with insulin blood levels significantly lower than the NC rats (P < .001). They also showed significantly increased LPO concentrations in the lungs (P < .01) after 4 and 12 weeks of follow-up. In contrast, SOD, CAT, and GSH-Px antioxidant activities were significantly reduced in these periods (P < .01) 12 weeks after diabetes induction. Successful PT corrected all clinical and metabolic changes in the diabetic rats, with sustained normoglycemia throughout the study. Excessive lung LPO production and low SOD, CAT, and GSH-Px antioxidant activities were already back to normal 4 weeks after PT.Conclusion. PT can control oxidative stress in pulmonary tissue of diabetic rats. It may be the basis for preventing chronic diabetic lesions in lungs.
Resumo:
Purpose. Oxidative stress is one of the most important mechanisms to explain genesis of the complications in the chronic progression of diabetes. In this investigation we studied the effects of pancreas transplantation (PT) on the imbalance caused by excessive production of free oxygen radicals by antioxidant defenses of rats with serious chronic hyperglycemia induced by alloxan.Methods. Ninety inbred male Lewis rats were randomly distributed into three groups: NC-30 nondiabetic controls; DC-30 diabetic controls without any treatment; PT-30 diabetic rats undergoing syngeneic PT from normal donor Lewis rats. Each experimental group was then split into three subgroups of 10 animals for sacrifice after 1, 3, or 6 months. Clinical and laboratory parameters from all rats as well as lipid hydroperoxide (LPO) concentrations and renal tissue enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were recorded for all rats.Results. Successful PT corrected clinical and laboratory alterations in diabetic rats with sustained normoglycemia throughout the study. A significant increase in LPO concentration and a marked reduction in SOD and CAT enzyme activity were observed in DC rats; there was no significant variation in renal tissue GSH-Px in this group. However, alterations in DC rats were completely restored from 1st month after PT; all evaluated enzyme levels did not significantly differ (P < .01) from those in NC controls.Conclusion. Successful PT controlled cellular oxidative stress in diabetic kidneys, which may prevent chronic lesions.
Resumo:
Diabetes mellitus (DM) é uma síndrome de etiologia múltipla caracterizada por hiperglicemia crônica. Esta hiperglicemia induz o aumento na produção de espécies reativas de oxigênio (ERO) e diminuição das defesas antioxidantes. Devido às complicações causadas pelo diabete, muitos indivíduos optam por terapias alternativas à base de plantas medicinais para amenizar seus efeitos. Sendo assim, nesta revisão de literatura, foram analisados e descritos diversos trabalhos experimentais com a utilização de animais diabéticos para comprovar os efeitos antioxidantes de algumas dessas plantas e verificar se os títulos e resumos disponibilizados nos artigos são compatíveis aos objetivos de nossa busca.
Resumo:
Recent lines of evidences indicate that several pathological conditions, as cardiovascular diseases, are associated with oxidative stress. In order to validate a butylated hydroxytoluene (BHT)-induced experimental model of oxidative stress in the cardiac tissue and serum lipids, 12 Wistar rats were divided into two groups, a control group and the BHT group, Which received BHT i.p. twice a week (1500 mg/kg body Weight) during 30 days. BHT group presented lower body weight gain and heart weight. BHT induced toxic effects on serum through increased triacylglycerols (TG), VLDL and LDL-cholesterol concentrations. The heart of BHT animals showed alteration of antioxidant defenses and increased concentrations of lipid hydroperoxides, indicating elevated lipoperoxidation. TG concentrations and lactate dehydrogenase activities were elevated in the cardiac Muscle of BHT animals. Thus, long-term administration of BHT is capable to induce oxidative and metabolic alterations similarly to some pathological disorders, constituting an efficient experimental model to health scientific research. (c) 2005 Elsevier GrnbH. All rights reserved.
Resumo:
Alcoholism is rampant in modern society and some antioxidant compound could perhaps be useful to reduce the damage done by alcohol consumption and abstinence. The present study was undertaken to investigate the association of N-acetylcysteine (NAC) intake, alcoholism, and alcohol abstinence on lipid profile, in vivo low-density lipoprotein (LDL) oxidation, oxidative stress, and antioxidant status in serum and liver of rats. Initially, male Wistar 30 rats were divided into two groups: (C, N = 6) given standard chow and water; (E, N = 24) receiving standard chow and aqueous ethanol solution in semi-voluntary research. After 30 days of ethanol exposure, (E) group was divided into four subgroups (N = 6/group): (E-E) continued drinking 30% ethanol solution; (E-NAC) drinking ethanol solution containing 2 g/L NAC (AB) changed ethanol solution to water; (AB-NAC) changed ethanol to aqueous solution 2 g/L NAC. After 15 days of the E-group division, E-E rats had higher serum alanine transaminase, lower body weight, and surface area, despite higher energy intake than C. E-E rats had also lower feed efficiency, dyslipidemia with enhanced triacyl glycerol, very low-density lipoprotein (VLDL), lipid hydroperoxide (LH) and in vivo oxidized-LDL (ox-LDL). AB, E-NAC, and AB-NAC rats ameliorated serum oxidative stress markers and normalized serum lipids. E-E rats had higher hepatic LH and lower reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio than C, indicating hepatic oxidative stress. AB and E-NAC rats normalized hepatic LH, GSSG, and the GSH/GSSG ratio, compared to E-E. AB-NAC rats had the lowest serum ox-LDL, hepatic LH levels, and the highest GSH reductase activity in hepatic tissue. In conclusion, the present study brought new insights into alcohol consumption, because ethanol exposure enhanced serum in vivo ox-LDL, as well as serum and hepatic oxidative stress. N-acetylcysteine offers promising therapeutic value to inhibit ethanol-induced adverse effects. Ethanol withdrawal had beneficial effects on serum lipids, but was more effective when coupled with NAC supplementation. Ethanol abstinence and NAC intake interact synergistically, improving serum lipids and hepatic antioxidant defenses. (c) 2009 Elsevier B.V. All rights reserved.